18 research outputs found

    Global oceanic production of nitrous oxide

    Get PDF
    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass.We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1+/-0.9 to 3.4+/-0.9 Tg N yr^-1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed

    Association of Retinal and Macular Damage with Brain Atrophy in Multiple Sclerosis

    Get PDF
    Neuroaxonal degeneration in the central nervous system contributes substantially to the long term disability in multiple sclerosis (MS) patients. However, in vivo determination and monitoring of neurodegeneration remain difficult. As the widely used MRI-based approaches, including the brain parenchymal fraction (BPF) have some limitations, complementary in vivo measures for neurodegeneration are necessary. Optical coherence tomography (OCT) is a potent tool for the detection of MS-related retinal neurodegeneration. However, crucial aspects including the association between OCT- and MRI-based atrophy measures or the impact of MS-related parameters on OCT parameters are still unclear. In this large prospective cross-sectional study on 104 relapsing remitting multiple sclerosis (RRMS) patients we evaluated the associations of retinal nerve fiber layer thickness (RNFLT) and total macular volume (TMV) with BPF and addressed the impact of disease-determining parameters on RNFLT, TMV or BPF. BPF, normalized for subject head size, was estimated with SIENAX. Relations were analyzed primarily by Generalized Estimating Equation (GEE) models considering within-patient inter-eye relations. We found that both RNFLT (p = 0.019, GEE) and TMV (p = 0.004, GEE) associate with BPF. RNFLT was furthermore linked to the disease duration (p<0.001, GEE) but neither to disease severity nor patients' age. Contrarily, BPF was rather associated with severity (p<0.001, GEE) than disease duration and was confounded by age (p<0.001, GEE). TMV was not associated with any of these parameters. Thus, we conclude that in RRMS patients with relatively short disease duration and rather mild disability RNFLT and TMV reflect brain atrophy and are thus promising parameters to evaluate neurodegeneration in MS. Furthermore, our data suggest that RNFLT and BPF reflect different aspects of MS. Whereas BPF best reflects disease severity, RNFLT might be the better parameter for monitoring axonal damage longitudinally. Longitudinal studies are necessary for validation of data and to further clarify the relevance of TMV

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Automatisiertes QualitÀtsmanagement von Bilddaten in der klinischen Verbundforschung

    No full text

    Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study

    No full text
    We investigated the association of retinal nerve fibre layer thickness (RNFL) with white matter damage assessed by diffusion tensor imaging (DTI). Forty-four MS patients and 30 healthy subjects underwent optical coherence tomography. DTI was analysed with a voxel-based whole brain and region-based analysis of optic radiation, corpus callosum and further white matter. Correlations between RNFL, fractional anisotropy (FA) and other DTI-based parameters were assessed in patients and controls. RNFL correlated with optic radiation FA, but also with corpus callosum and remaining white matter FA. Our findings demonstrate that RNFL changes indicate white matter damage exceeding the visual pathway

    Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue

    No full text
    BACKGROUND: Fatigue is one of the most frequent and disabling symptoms in multiple sclerosis, but its pathophysiological mechanisms are poorly understood. It is in particular unclear whether and how fatigue relates to structural and functional brain changes. OBJECTIVE: We aimed to analyse the association of fatigue severity with basal ganglia functional connectivity, basal ganglia volumes, white matter integrity and grey matter density. METHODS: In 44 patients with relapsing-remitting multiple sclerosis and 20 age- and gender-matched healthy controls, resting-state fMRI, diffusion tensor imaging and voxel-based morphometry was performed. RESULTS: In comparison with healthy controls, patients showed alteration of grey matter density, white matter integrity, basal ganglia volumes and basal ganglia functional connectivity. No association of fatigue severity with grey matter density, white matter integrity and basal ganglia volumes was observed within patients. In contrast, fatigue severity was negatively correlated with functional connectivity of basal ganglia nuclei with medial prefrontal cortex, precuneus and posterior cingulate cortex in patients. Furthermore, fatigue severity was positively correlated with functional connectivity between caudate nucleus and motor cortex. CONCLUSION: Fatigue is associated with distinct alterations of basal ganglia functional connectivity independent of overall disability. The pattern of connectivity changes suggests that disruption of motor and non-motor basal ganglia functions, including motivation and reward processing, contributes to fatigue pathophysiology in multiple sclerosis

    Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations

    Full text link
    BACKGROUND: Retinal nerve fibre layer (RNFL) thinning is associated with brain atrophy in multiple sclerosis (MS). An influence of optic neuritis is well documented but sparsely investigated. Recently, the retinal ganglion cell layer (GCL) has been shown to provide superior information regarding visual function and retinal neurodegeneration as compared with RNFL. OBJECTIVE: To investigate the association of white and grey matter brain volume with peripapillary RNFL and macular GCL in MS patients with and without a history of optic neuritis. METHODS: 63 patients with relapsing-remitting MS were included in a two-centre cross-sectional prospective study. All patients underwent retinal examination with spectral domain optical coherence tomography and 1.5 T MRI for determination of normalized brain volume (NBV), white matter volume (NWMV) and grey matter volume (NGMV). RESULTS: Both RNFL and GCL were associated with NBV, NWMV and NGMV in eyes without previous optic neuritis. This association is disrupted in the case of NGMV following optic neuritis. CONCLUSIONS: Both RNFL and GCL as parameters of neuro-axonal damage are comparably linked to whole brain as well as white and grey matter atrophy. An event of optic neuritis interferes with this relation, adding further damage to the optic nerve and disrupting especially an association with grey matter
    corecore