66 research outputs found

    EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes

    Get PDF
    Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges

    Regaining momentum for international climate policy beyond Copenhagen

    Get PDF
    The 'Copenhagen Accord' fails to deliver the political framework for a fair, ambitious and legally-binding international climate agreement beyond 2012. The current climate policy regime dynamics are insufficient to reflect the realities of topical complexity, actor coalitions, as well as financial, legal and institutional challenges in the light of extreme time constraints to avoid 'dangerous' climate change of more than 2°C. In this paper we analyze these stumbling blocks for international climate policy and discuss alternatives in order to regain momentum for future negotiations

    Setting priorities for land management to mitigate climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.</p> <p>Results</p> <p>In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.</p> <p>Conclusions</p> <p>When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.</p

    European agricultural landscapes, common agricultural policy and ecosystem services: a review

    Get PDF
    Since the 1950s, intensification and scale enlargement of agriculture have changed agricultural landscapes across Europe. The intensification and scale enlargement of farming was initially driven by the large-scale application of synthetic fertilizers, mechanization and subsidies of the European Common Agricultural Policy (CAP). Then, after the 1990s, a further intensification and scale enlargement, and land abandonment in less favored areas was caused by globalization of commodity markets and CAP reforms. The landscape changes during the past six decades have changed the flows and values of ecosystem services. Here, we have reviewed the literature on agricultural policies and management, landscape structure and composition, and the contribution of ecosystem services to regional competitiveness. The objective was to define an analytical framework to determine and assess ecosystem services at the landscape scale. In contrast to natural ecosystems, ecosystem service flows and values in agricultural landscapes are often a result of interactions between agricultural management and ecological structures. We describe how land management by farmers and other land managers relates to landscape structure and composition. We also examine the influence of commodity markets and policies on the behavior of land managers. Additionally, we studied the influence of consumer demand on flows and values of the ecosystem services that originate from the agricultural landscape

    Das Mikrobiom im gutartigen Nierengewebe und im Nierenzellkarzinom

    No full text
    corecore