51 research outputs found
The X-ray Properties of Nearby Abell Clusters from the ROSAT All-Sky Survey: The Sample and Correlations with Optical Properties
We present an analysis of the X-ray emission for a complete sample of 288
Abell clusters spanning the redshift range 0.016<= z <= 0.09 from the ROSAT
All-Sky Survey. This sample is based on our 20cm VLA survey of nearby Abell
clusters. We find an X-ray detection rate of 83%. We report cluster X-ray
fluxes and luminosities and two different flux ratios indicative of the
concentration and extent of the emission. We examine correlations between the
X-ray luminosity, Abell Richness, and Bautz-Morgan and Rood-Sastry cluster
morphologies. We find a strong correlation between Lx and cluster richness
coupled to a dependence on the optical morphological type. These results are
consistent with the observed scatter between X-ray luminosity and temperature
and a large fraction of cooling flows. For each cluster field we also report
the positions, peak X-ray fluxes, and flux-ratios of all X-ray peaks above
3-sigma significance within a box of 2x2 Mpc centered on Abell's position.Comment: 59 pages including 3 tables, + 10 figures. To appear in AJ, Dec 200
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
Genetically predicted cortisol levels and risk of venous thromboembolism
Introduction - In observational studies, venous thromboembolism (VTE) has been associated with Cushing’s syndrome and with persistent mental stress, two conditions associated with higher cortisol levels. However, it remains unknown whether high cortisol levels within the usual range are causally associated with VTE risk. We aimed to assess the association between plasma cortisol levels and VTE risk using Mendelian randomization.
Methods - Three genetic variants in the SERPINA1/SERPINA6 locus (rs12589136, rs11621961 and rs2749527) were used to proxy plasma cortisol. The associations of the cortisol-associated genetic variants with VTE were acquired from the INVENT (28 907 cases and 157 243 non-cases) and FinnGen (6913 cases and 169 986 non-cases) consortia. Corresponding data for VTE subtypes were available from the FinnGen consortium and UK Biobank. Two-sample Mendelian randomization analyses (inverse-variance weighted method) were performed.
Results - Genetic predisposition to higher plasma cortisol levels was associated with a reduced risk of VTE (odds ratio [OR] per one standard deviation increment 0.73, 95% confidence interval [CI] 0.62–0.87, p
Conclusions - This study provides evidence that genetically predicted plasma cortisol levels in the high end of the normal range are associated with a decreased risk of VTE and that this association may be mediated by blood pressure. This study has implications for the planning of observational studies of cortisol and VTE, suggesting that blood pressure traits should be measured and accounted for
SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to
genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility
and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component.
Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci
(eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene),
including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform
genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer
SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the
diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
A new explosive compatibility test /
"TID-4500 (16th Ed.)" -t.p."UC-4 Chemistry-General" -t.p.Includes bibliographical references.Operated by The University of California, BerkeleyMode of access: Internet
- …