120 research outputs found

    UK Consensus on Normal Tissue Dose Constraints for Stereotactic Radiotherapy

    Get PDF
    Six UK studies investigating stereotactic ablative radiotherapy (SABR) are currently open. Many of these involve the treatment of oligometastatic disease at different locations in the body. Members of all the trial management groups collaborated to generate a consensus document on appropriate organ at risk dose constraints. Values from existing but older reviews were updated using data from current studies. It is hoped that this unified approach will facilitate standardised implementation of SABR across the UK and will allow meaningful toxicity comparisons between SABR studies and internationally

    Local Enhancement Promotes Cockroach Feeding Aggregations

    Get PDF
    Communication and learning from each other are part of the success of animal societies. Social insects invest considerable effort into signalling to their nestmates the locations of the most profitable resources in their environment. Growing evidence also indicates that insects glean such information through cues inadvertently provided by their conspecifics. Here, we investigate social information use in the foraging decisions by gregarious cockroaches (Blattella germanica L.). Individual cockroaches given a simultaneous choice in a Y-olfactometer between the odour of feeding conspecifics and the mixed odour of food plus non-feeding conspecifics showed a preference for the arm scented with the odour of feeding conspecifics. Social information (the presence of feeding conspecifics) was produced by cockroaches of all age classes and perceived at short distance in the olfactometer arms, suggesting the use of inadvertently provided cues rather than signals. We discuss the nature of these cues and the role of local enhancement (the selection of a location based on cues associated with the presence of conspecifics) in the formation of feeding aggregations in B. germanica. Similar cue-mediated recruitments could underpin a wide range of collective behaviours in group-living insects

    Quorum Decision-Making in Foraging Fish Shoals

    Get PDF
    Quorum responses provide a means for group-living animals to integrate and filter disparate social information to produce accurate and coherent group decisions. A quorum response may be defined as a steep increase in the probability of group members performing a given behaviour once a threshold minimum number of their group mates already performing that behaviour is exceeded. In a previous study we reported the use of a quorum response in group decision-making of threespine sticklebacks (Gasterosteus aculeatus) under a simulated predation threat. Here we examine the use of quorum responses by shoals of sticklebacks in first locating and then leaving a foraging patch. We show that a quorum rule explains movement decisions by threespine sticklebacks toward and then away from a food patch. Following both to and from a food patch occurred when a threshold number of initiators was exceeded, with the threshold being determined by the group size

    Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary auditory cortex (AI) neurons show qualitatively distinct response features to successive acoustic signals depending on the inter-stimulus intervals (ISI). Such ISI-dependent AI responses are believed to underlie, at least partially, categorical perception of click trains (elemental vs. fused quality) and stop consonant-vowel syllables (eg.,/da/-/ta/continuum).</p> <p>Methods</p> <p>Single unit recordings were conducted on 116 AI neurons in awake cats. Rectangular clicks were presented either alone (single click paradigm) or in a train fashion with variable ISI (2–480 ms) (click-train paradigm). Response features of AI neurons were quantified as a function of ISI: one measure was related to the degree of stimulus locking (temporal modulation transfer function [tMTF]) and another measure was based on firing rate (rate modulation transfer function [rMTF]). An additional modeling study was performed to gain insight into neurophysiological bases of the observed responses.</p> <p>Results</p> <p>In the click-train paradigm, the majority of the AI neurons ("synchronization type"; <it>n </it>= 72) showed stimulus-locking responses at long ISIs. The shorter cutoff ISI for stimulus-locking responses was on average ~30 ms and was level tolerant in accordance with the perceptual boundary of click trains and of consonant-vowel syllables. The shape of tMTF of those neurons was either band-pass or low-pass. The single click paradigm revealed, at maximum, four response periods in the following order: 1st excitation, 1st suppression, 2nd excitation then 2nd suppression. The 1st excitation and 1st suppression was found exclusively in the synchronization type, implying that the temporal interplay between excitation and suppression underlies stimulus-locking responses. Among these neurons, those showing the 2nd suppression had band-pass tMTF whereas those with low-pass tMTF never showed the 2nd suppression, implying that tMTF shape is mediated through the 2nd suppression. The recovery time course of excitability suggested the involvement of short-term plasticity. The observed phenomena were well captured by a single cell model which incorporated AMPA, GABA<sub>A</sub>, NMDA and GABA<sub>B </sub>receptors as well as short-term plasticity of thalamocortical synaptic connections.</p> <p>Conclusion</p> <p>Overall, it was suggested that ISI-dependent responses of the majority of AI neurons are configured through the temporal interplay of excitation and suppression (inhibition) along with short-term plasticity.</p

    Aripiprazole in the Maintenance Treatment of Bipolar Disorder: A Critical Review of the Evidence and Its Dissemination into the Scientific Literature

    Get PDF
    A systematic search of the literature reveals limited evidence to support use of aripiprazole, a second-generation antipsychotic medication, in maintenance therapy of bipolar disorder, despite widespread use

    Division of labor in honeybees: form, function, and proximate mechanisms

    Get PDF
    Honeybees exhibit two patterns of organization of work. In the spring and summer, division of labor is used to maximize growth rate and resource accumulation, while during the winter, worker survivorship through the poor season is paramount, and bees become generalists. This work proposes new organismal and proximate level conceptual models for these phenomena. The first half of the paper presents a push–pull model for temporal polyethism. Members of the nursing caste are proposed to be pushed from their caste by the development of workers behind them in the temporal caste sequence, while middle-aged bees are pulled from their caste via interactions with the caste ahead of them. The model is, hence, an amalgamation of previous models, in particular, the social inhibition and foraging for work models. The second half of the paper presents a model for the proximate basis of temporal polyethism. Temporal castes exhibit specialized physiology and switch caste when it is adaptive at the colony level. The model proposes that caste-specific physiology is dependent on mutually reinforcing positive feedback mechanisms that lock a bee into a particular behavioral phase. Releasing mechanisms that relate colony level information are then hypothesized to disrupt particular components of the priming mechanisms to trigger endocrinological cascades that lead to the next temporal caste. Priming and releasing mechanisms for the nursing caste are mapped out that are consistent with current experimental results. Less information-rich, but plausible, mechanisms for the middle-aged and foraging castes are also presented

    The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells

    Get PDF
    Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existance of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use

    Can religious affiliation explain the disadvantage of Muslim women in the British labour market?

    Get PDF
    This article aims to explain the labour market penalties among Muslim women in Britain. It draws on theories of intersectionality and colour/cultural racism to argue that the labour market experience of British-Muslim women is multiply determined via criteria of ascription such as ethnicity, migration status, race and religion rather than criteria of achievement. The study uses data from the Labour Force Survey (2002–2013) with a large sample (N=245,391) of women aged 19–65 years. The overarching finding suggests that most Muslim women, regardless of their multiple ascriptive identities, generation and levels of qualifications, still face significant penalties compared with their White-British Christian counterparts. The penalties for some groups, such as Pakistani, Bangladeshi and Black-Muslim women, are harsher than for Indian and White-Muslim women, demonstrating how different social markers and multiple identities have contingent relationships to multiple determinants and outcomes

    Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci

    Get PDF

    Food-offering calls in wild golden lion tamarins (Leontopithecus rosalia) : evidence for teaching behavior?

    Get PDF
    Many animals emit calls in the presence of food, but researchers do not always know the function of these calls. Evidence suggests that adult golden lion tamarins (Leontopithecus rosalia) use food-offering calls to teach juveniles which substrate (i.e., microhabitat) to forage on, or in, for food. However, we do not yet know whether juveniles learn from this aspect of the adults’ behavior. Here we examine whether juveniles learn to associate food-offering calls with a foraging substrate, as a step toward assessing whether these calls qualify as teaching behavior. We compared the performance of four wild juvenile golden lion tamarins that were introduced to a novel substrate while exposed to playbacks of food-offering calls (experimental condition) to the performance of three juveniles that were exposed to the novel substrate without the presence of food-offering playbacks (control condition). We varied the location of the novel substrate between trials. We found that food-offering calls had an immediate effect on juveniles’ interactions with the novel substrate, whether they inserted their hands into the substrate and their eating behavior, and a long-term effect on eating behavior at the substrate. The findings imply that juvenile golden lion tamarins can learn through food-offering calls about the availability of food at a substrate, which is consistent with (but does not prove) teaching in golden lion tamarins through stimulus enhancement. Our findings support the hypothesis that teaching might be more likely to evolve in cooperatively breeding species with complex ecological niches.Publisher PDFPeer reviewe
    corecore