75 research outputs found

    The Sixth Continent: Mikhail Gorbachov & the Soviet Union

    Get PDF

    Khrushehev

    Get PDF

    p73 Regulates Neurodegeneration and Phospho-Tau Accumulation during Aging and Alzheimer's Disease

    Get PDF
    SummaryThe genetic mechanisms that regulate neurodegeneration are only poorly understood. We show that the loss of one allele of the p53 family member, p73, makes mice susceptible to neurodegeneration as a consequence of aging or Alzheimer's disease (AD). Behavioral analyses demonstrated that old, but not young, p73+/− mice displayed reduced motor and cognitive function, CNS atrophy, and neuronal degeneration. Unexpectedly, brains of aged p73+/− mice demonstrated dramatic accumulations of phospho-tau (P-tau)-positive filaments. Moreover, when crossed to a mouse model of AD expressing a mutant amyloid precursor protein, brains of these mice showed neuronal degeneration and early and robust formation of tangle-like structures containing P-tau. The increase in P-tau was likely mediated by JNK; in p73+/− neurons, the activity of the p73 target JNK was enhanced, and JNK regulated P-tau levels. Thus, p73 is essential for preventing neurodegeneration, and haploinsufficiency for p73 may be a susceptibility factor for AD and other neurodegenerative disorders

    Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream.

    Get PDF
    The colonization of leaf litter (Alnus glutinosa) by aquatic hyphomycetes was studied in a summer cool stream of the French Pyrenees. In spite of the rapid decomposition of leaves, the fungal community exhibited a characteristic successional pattern with three phases. The initial colonization stage was defined by a dense sporulation of the five species Tetrachaetum elegans, Lemonniera aquatica, L. centrosphaera, L. terrestris, and in particular Flagellospora curvula. After four weeks of colonization, a mature community had established. It was characterized by high species diversity and peak fungal biomass, which was measured as ergosterol content, and coincided with about 50 % loss in leaf mass. With leaf decay progressing further, diversity diminished concomitant with a slight reduction in fungal biomass and a sharp decrease in the rate of conidial production. Typical species of this late successional stage were Clavatospora longibrachiata, Heliscella stellata and Goniopila monticola. This successional pattern proved to be stable both within the period of leaf fall in one year and between two successive years. Between-seasons differences were quite small as well, the striking lack of species replacement apparently being due to not exceeding the threshold temperature of 16-18 °C as previously defined in literature. In spite of this general stability in community structure, correspondence analysis discriminated the communities on leaf packs with equal exposure times according to season, with the cyclical arrangement of leaf packs on the principal factorial plane reflecting the seasonal cycle. The colonization of fresh (non-dried) leaf litter by aquatic hyphomycetes was delayed compared to air-dried litter; however, the lead diminished with progressing leaf decay, resulting in nearly identical communities on fresh and dried leaves after four weeks of decomposition

    Successful Cognitive Aging in Rats: A Role for mGluR5 Glutamate Receptors, Homer 1 Proteins and Downstream Signaling Pathways

    Get PDF
    Normal aging is associated with impairments in cognition, especially learning and memory. However, major individual differences are known to exist. Using the classical Morris Water Maze (MWM) task, we discriminated a population of 24-months old Long Evans aged rats in two groups - memory-impaired (AI) and memory-unimpaired (AU) in comparison with 6-months old adult animals. AI rats presented deficits in learning, reverse memory and retention. At the molecular level, an increase in metabotropic glutamate receptors 5 (mGluR5) was observed in post-synaptic densities (PSD) in the hippocampus of AU rats after training. Scaffolding Homer 1b/c proteins binding to group 1 mGluR facilitate coupling with its signaling effectors while Homer 1a reduces it. Both Homer 1a and 1b/c levels were up-regulated in the hippocampus PSD of AU animals following MWM task. Using immunohistochemistry we further demonstrated that mGluR5 as well as Homer 1b/c stainings were enhanced in the CA1 hippocampus sub-field of AU animals. In fact mGluR5 and Homer 1 isoforms were more abundant and co-localized in the hippocampal dendrites in AU rats. However, the ratio of Homer 1a/Homer 1b/c bound to mGluR5 in the PSD was four times lower for AU animals compared to AI rats. Consequently, AU animals presented higher PKCÎł, ERK, p70S6K, mTOR and CREB activation. Finally the expression of immediate early gene Arc/Arg3.1 was shown to be higher in AU rats in accordance with its role in spatial memory consolidation. On the basis of these results, a model of successful cognitive aging with a critical role for mGluR5, Homer 1 proteins and downstream signalling pathways is proposed here

    Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials

    Get PDF
    Background Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response. Methods We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab. Findings In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, Îș-free light chain, ÎČ2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo. Interpretation Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases. Funding UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    • 

    corecore