52 research outputs found
Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: evidence for subduction and continued convergence after India-Asia collision
Abstract.: Detailed geological mapping in the Drosh-Shishi area in southern Chitral (NW Pakistan) was combined with high-precision U-Pb dating on zircons to constrain the timing of magmatism and associated deformation/metamorphic events related to the Kohistan-Karakoram convergence and collision. Our new ages indicate that the Mesozoic to Tertiary magmatic history of this region is influenced by long-lived melt generation above an active subduction zone. Dated intrusive rocks range in age from 130 to 39 million years, indicating that subduction-related magmatism continued after the Kohistan-Karakoram and the India-Asia collisions. Initial hafnium isotope ratios were measured on the dated zircons to constrain the type of melt source of the dated plutons. The data reveal the different nature of partly coeval magmatism in these units, i.e. continental arc magmatism in the Karakoram (ca. 130-104 Ma) and arc magmatism magmatism on the Kohistan side (112-39 Ma). Intrusions within the suture zone can be clearly traced to be Karakoram-derived on the basis of initial Hf isotopic compositions. Granite dykes crosscutting the Kohistan units have sampled an underlying, old continental basement of Gondwana affinity. The geochronological evidence presented in this paper is consistent with Cretaceous subduction beneath the Karakoram Terrane. The related calc-alkaline magmatism seems to have stopped at about 100 Ma. Granite dykes on the Kohistan side show that the magmatic and tectonic history of the Karakoram-Kohistan Suture Zone continued to the Eocene. This long tectono-metamorphic and magmatic activity in the arc plates was likely due to complex and few million year long interplays between subduction and thrusting events in the forearc, within-arc and back-arc regions between two active subduction zone
Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential
Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.Peer reviewe
- …