3,751 research outputs found

    Convergent approach to persistent atrial fibrillation ablation:long-term single-centre safety and efficacy

    Get PDF
    Background:Efforts to maintain sinus rhythm in patients with persistent atrial fibrillation (PsAF) remain challenging, with suboptimal long-term outcomes.Methods:All patients undergoing convergent PsAF ablation at our centre were retrospectively analysed. The Atricure Epi-Sense® system was used to perform surgical radiofrequency ablation of the LA posterior wall followed by endocardial ablation.Results:A total of 24 patients underwent convergent PsAF ablation, and 21 (84%) of them were male with a median age of 63. Twelve (50%) patients were obese. In total, 71% of patients had a severely dilated left atrium, and the majority (63%) had preserved left ventricular function. All were longstanding persistent. Eighteen (75%) patients had an AF duration of >2 years. There were no endocardial procedure complications. At 36 months, all patients were alive with no new stroke/transient ischaemic attack (TIA). Freedom from documented AF at 3, 6, 12, 18, 24, and 36 months was 83%, 78%, 74%, 74%, 74%, and 61%, respectively. There were no major surgical complications, with five minor complications recorded comprising minor wound infection, pericarditic pain, and hernia.Conclusions:Our data suggest that convergent AF ablation is effective with excellent immediate and long-term safety outcomes in a real-world cohort of patients with a significant duration of AF and evidence of established atrial remodelling. Convergent AF ablation appears to offer a safe and effective option for those who are unlikely to benefit from existing therapeutic strategies for maintaining sinus rhythm, and further evaluation of this exciting technique is warranted. Our cohort is unique within the published literature both in terms of length of follow-up and very low rate of adverse events

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore