16 research outputs found

    Hyperandrogenization and late gestational infection result in an autism-like phenotype in a rodent model

    Get PDF
    Autism spectrum disorder (ASD) is characterized by persistent difficulties with communication, social behaviour, and repetitive behaviour, and disproportionately affects males compared to females. Maternal immune activation (MIA) resulting from gestational infections can disrupt fetal neurodevelopment, increasing the risk for neurodevelopmental disorders such as ASD. Rodent models of MIA produce offspring with an ASD-like phenotype and demonstrate a sex bias mirroring the human condition. Sex differences in brain and behaviour are largely attributable to the prenatal androgen surge during late gestation which acts to masculinize the male brain. In the current study, I assessed whether prenatal androgens mediate the sex bias in MIA-associated deficits. I manipulated MIA both prior to (embryonic day [E] 12.5) and during (E17.5) the prenatal androgen surge (i.e., early and late gestation, respectively), and in the presence or absence of exogenous androgen treatment. Offspring of both sexes were assessed for communicative, social, and repetitive behaviour deficits. The findings support male vulnerability to MIA deficits, that is dependent on the timing of gestational infection, such that the greatest deficits were found when MIA coincided with the prenatal androgen surge. Exogenous androgens did not have an additive effect of exacerbating deficits in late gestational MIA; instead, hyperandrogenization in the absence of MIA resulted in behavioural deficits comparable to those of MIA offspring. These results suggest that high androgen signalling alone is capable of producing an ASD-like phenotype, supporting the use of hyperandrogenization as a rodent model of ASD. Overall, these findings indicate that the maternal immune system can influence offspring brain and behaviour in a sex- and time-dependent manner, and suggest that prenatal androgens contribute to the greater risk of ASD in males than females

    HIV-1 recombinants with multiple parental strains in low-prevalence, remote regions of Cameroon: Evolutionary relics?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV pandemic disseminated globally from Central West Africa, beginning in the second half of the twentieth century. To elucidate the virologic origins of the pandemic, a cross-sectional study was conducted of the genetic diversity of HIV-1 strains in villagers in 14 remote locations in Cameroon and in hospitalized and STI patients. DNA extracted from PBMC was PCR amplified from HIV(+) subjects. Partial <it>pol </it>amplicons (N = 164) and nearly full virus genomes (N = 78) were sequenced. Among the 3956 rural villagers studied, the prevalence of HIV infection was 4.9%; among the hospitalized and clinic patients, it was 8.6%.</p> <p>Results</p> <p>Virus genotypes fell into two distinctive groups. A majority of the genotyped strains (109/164) were the circulating recombinant form (CRF) known to be endemic in West Africa and Central West Africa, CRF02_AG. The second most common genetic form (9/164) was the recently described CRF22_01A1, and the rest were a collection of 4 different subtypes (A2, D, F2, G) and 6 different CRFs (-01, -11, -13, -18, -25, -37). Remarkably, 10.4% of HIV-1 genomes detected (17/164) were heretofore undescribed unique recombinant forms (URF) present in only a single person. Nearly full genome sequencing was completed for 78 of the viruses of interest. HIV genetic diversity was commonplace in rural villages: 12 villages each had at least one newly detected URF, and 9 villages had two or more.</p> <p>Conclusions</p> <p>These results show that while CRF02_AG dominated the HIV strains in the rural villages, the remainder of the viruses had tremendous genetic diversity. Between the trans-species transmission of SIV<sub>cpz </sub>and the dispersal of pandemic HIV-1, there was a time when we hypothesize that nascent HIV-1 was spreading, but only to a limited extent, recombining with other local HIV-1, creating a large variety of recombinants. When one of those recombinants began to spread widely (i.e. became epidemic), it was recognized as a subtype. We hypothesize that the viruses in these remote Cameroon villages may represent that pre-epidemic stage of viral evolution.</p

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Renal nerves contribute to hypertension in Schlager BPH/2J mice

    Get PDF
    Schlager mice (BPH/2J) are hypertensive due to a greater contribution of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). The kidneys of BPH/2J are hyper-innervated suggesting renal nerves may contribute to the hypertension. We therefore determined the effect of bilateral renal denervation (RD) on hypertension in BPH/2J. Mean arterial pressure (MAP) was measured by radiotelemetry before and for 3 weeks after RD in BPH/2J and BPN/3J. The effects of pentolinium and enalaprilat were examined to determine the contribution of the SNS and RAS, respectively. After 3 weeks, MAP was −10.9 ± 2.1 mmHg lower in RD BPH/2J compared to baseline and −2.1 ± 2.2 mmHg in sham BPH/2J (P < 0.001, n = 8–10). RD had no effect in BPN/3J (P > 0.1). The depressor response to pentolinium was greater in BPH/2J than BPN/3J, but in both cases the response in RD mice was similar to sham. Enalaprilat decreased MAP more in RD BPH/2J compared to sham (−12 vs −3 mmHg, P < 0.001) but had no effect in BPN/3J. RD reduced renal noradrenaline in both strains but more so in BPH/2J. RD reduced renin mRNA and protein, but not plasma renin in BPH/2J to levels comparable with BPN/3J mice. We conclude that renal nerves contribute to hypertension in BPH mice as RD induced a sustained fall in MAP, which was associated with a reduction of intrarenal renin expression. The lack of inhibition of the depressor effects of pentolinium and enalaprilat by RD suggests that vasoconstrictor effects of the SNS or RAS are not involved

    Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment

    No full text
    Recent evidence has demonstrated a sex-specific role of the gut microbiome on social behavior such as anxiety, possibly driven by a reciprocal relationship between the gut microbiome and gonadal hormones. For instance, gonadal hormones drive sex differences in gut microbiota composition, and certain gut bacteria can produce androgens from glucocorticoids. We thus asked whether the gut microbiome can influence androgen-dependent socio-sexual behaviors. We first treated C57BL/6 mice with broad-spectrum antibiotics (ABX) in drinking water to deplete the gut microbiota either transiently during early development (embryonic day 16-postnatal day [PND] 21) or in adulthood (PND 60–85). We hypothesized that if ABX interferes with androgens, then early ABX would interfere with critical periods for sexual differentiation of brain and thus lead to long-term decreases in males' socio-sexual behavior, while adult ABX would interfere with androgens’ activational effects on behavior. We found that in males but not females, early and adult ABX treatment decreased territorial aggression, and adult ABX also decreased sexual odor preference. We then assessed whether testosterone and/or cecal microbiota transplantation (CMT) via oral gavage could prevent ABX-induced socio-sexual behavioral deficits in adult ABX-treated males. Mice were treated with same- or other-sex control cecum contents or with testosterone for two weeks. While testosterone was not effective in rescuing any behavior, we found that male CMT restored both olfactory preference and aggression in adult ABX male mice, while female CMT restored olfactory preference but not aggression. These results suggest sex-specific effects of the gut microbiome on socio-sexual behaviors, independent of androgens
    corecore