70 research outputs found

    Continuous PDE Dynamics Forecasting with Implicit Neural Representations

    Full text link
    Effective data-driven PDE forecasting methods often rely on fixed spatial and / or temporal discretizations. This raises limitations in real-world applications like weather prediction where flexible extrapolation at arbitrary spatiotemporal locations is required. We address this problem by introducing a new data-driven approach, DINo, that models a PDE's flow with continuous-time dynamics of spatially continuous functions. This is achieved by embedding spatial observations independently of their discretization via Implicit Neural Representations in a small latent space temporally driven by a learned ODE. This separate and flexible treatment of time and space makes DINo the first data-driven model to combine the following advantages. It extrapolates at arbitrary spatial and temporal locations; it can learn from sparse irregular grids or manifolds; at test time, it generalizes to new grids or resolutions. DINo outperforms alternative neural PDE forecasters in a variety of challenging generalization scenarios on representative PDE systems

    Dysregulation of CXC motif ligand 10 during aging and association with cognitive performance

    Get PDF
    Chronic low-grade inflammation during aging (inflammaging) is associated with cognitive decline and neurodegeneration, however, the mechanisms underlying inflammaging are unclear. We studied a population (n = 361) of healthy young and old adults from the MyoAge cohort. Peripheral levels of C-X-C motif chemokine 10 (CXCL10) was found to be higher in older adults, compared with young, and negatively associated with working memory performance. This coincided with an age-related reduction in blood DNA methylation at specific CpGs within the CXCL10 gene promoter. In vitro analysis supported the role of DNA methylation in regulating CXCL10 transcription. A polymorphism (rs56061981) that altered methylation at one of these CpG sites further associated with working memory performance in two independent aging cohorts. Studying prefrontal cortex samples, we found higher CXCL10 protein levels in those with Alzheimer’s disease, compared to aged controls. These findings support the association of peripheral inflammation, as demonstrated by CXCL10, in aging and cognitive decline. We reveal age-related epigenetic and genetic factors which contribute to the dysregulation of CXCL10

    Representation Learning and Deep Generative Modeling in Dynamical Systems

    No full text
    L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement.The recent rise of deep learning has been motivated by numerous scientific breakthroughs, particularly regarding representation learning and generative modeling. However, most of these achievements have been obtained on image or text data, whose evolution through time remains challenging for existing methods. Given their importance for autonomous systems to adapt in a constantly evolving environment, these challenges have been actively investigated in a growing body of work. In this thesis, we follow this line of work and study several aspects of temporality and dynamical systems in deep unsupervised representation learning and generative modeling. Firstly, we present a general-purpose deep unsupervised representation learning method for time series tackling scalability and adaptivity issues arising in practical applications. We then further study in a second part representation learning for sequences by focusing on structured and stochastic spatiotemporal data: videos and physical phenomena. We show in this context that performant temporal generative prediction models help to uncover meaningful and disentangled representations, and conversely. We highlight to this end the crucial role of differential equations in the modeling and embedding of these natural sequences within sequential generative models. Finally, we more broadly analyze in a third part a popular class of generative models, generative adversarial networks, under the scope of dynamical systems. We study the evolution of the involved neural networks with respect to their training time by describing it with a differential equation, allowing us to gain a novel understanding of this generative model

    Apprentissage de représentations et modèles génératifs profonds dans les systèmes dynamiques

    No full text
    The recent rise of deep learning has been motivated by numerous scientific breakthroughs, particularly regarding representation learning and generative modeling. However, most of these achievements have been obtained on image or text data, whose evolution through time remains challenging for existing methods. Given their importance for autonomous systems to adapt in a constantly evolving environment, these challenges have been actively investigated in a growing body of work. In this thesis, we follow this line of work and study several aspects of temporality and dynamical systems in deep unsupervised representation learning and generative modeling. Firstly, we present a general-purpose deep unsupervised representation learning method for time series tackling scalability and adaptivity issues arising in practical applications. We then further study in a second part representation learning for sequences by focusing on structured and stochastic spatiotemporal data: videos and physical phenomena. We show in this context that performant temporal generative prediction models help to uncover meaningful and disentangled representations, and conversely. We highlight to this end the crucial role of differential equations in the modeling and embedding of these natural sequences within sequential generative models. Finally, we more broadly analyze in a third part a popular class of generative models, generative adversarial networks, under the scope of dynamical systems. We study the evolution of the involved neural networks with respect to their training time by describing it with a differential equation, allowing us to gain a novel understanding of this generative model.L'essor de l'apprentissage profond trouve notamment sa source dans les avancées scientifiques qu'il a permises en termes d'apprentissage de représentations et de modèles génératifs. Dans leur grande majorité, ces progrès ont cependant été obtenus sur des données textuelles et visuelles statiques, les données temporelles demeurant un défi pour ces méthodes. Compte tenu de leur importance pour l'automatisation croissante de multiples tâches, de plus en plus de travaux en apprentissage automatique s'intéressent aux problématiques d'évolution temporelle. Dans cette thèse, nous étudions ainsi plusieurs aspects de la temporalité et des systèmes dynamiques dans les réseaux de neurones profonds pour l'apprentissage non supervisé de représentations et de modèles génératifs. Premièrement, nous présentons une méthode générale d'apprentissage de représentations non supervisée pour les séries temporelles prenant en compte des besoins pratiques d'efficacité et de flexibilité. Dans un second temps, nous nous intéressons à l'apprentissage pour les séquences structurées de nature spatio-temporelle, couvrant les vidéos et phénomènes physiques. En les modélisant par des équations différentielles paramétrisées par des réseaux de neurones, nous montrons la corrélation entre la découverte de représentations pertinentes d'un côté, et de l'autre la fabrique de modèles prédictifs performants sur ces données. Enfin, nous analysons plus généralement dans une troisième partie les populaires réseaux antagonistes génératifs dont nous décrivons la dynamique d'apprentissage par des équations différentielles, nous permettant d'améliorer la compréhension de leur fonctionnement

    Robustness of classifiers to uniform p\ell_p and Gaussian noise

    Get PDF
    International audienceWe study the robustness of classifiers to various kinds of random noise models. In particular, we consider noise drawn uniformly from the p\ell_p ball for p[1,]p \in [1, \infty] and Gaussian noise with an arbitrary covariance matrix. We characterize this robustness to random noise in terms of the distance to the decision boundary of the classifier. This analysis applies to linear classifiers as well as classifiers with locally approximately flat decision boundaries, a condition which is satisfied by state-of-the-art deep neural networks. The predicted robustness is verified experimentally
    corecore