36 research outputs found

    Individual, sexual and temporal variation in the winter home range sizes of GPS-tagged Eurasian Curlews Numenius arquata

    Get PDF
    Capsule: Eurasian Curlews Numenius arquata were faithful to foraging and roosting areas on their coastal wintering grounds, including a habitat creation site. Home range sizes were greater at night than during the day, and showed high inter-individual variability which was not related to sex. Aims: To examine factors affecting variation in the winter home range size of the largest European wader species: the near-threatened Eurasian Curlew Numenius arquata. Methods: We examined individual, sexual and temporal (day/night, seasonal and annual) variation in the size of the home ranges of 18 GPS tagged Curlews captured at two sites on the Humber Estuary, UK. Results: Home ranges were small (mean ± SD = 555.5 ± 557.9 ha) and varied slightly in size through the non-breeding season (September–March). We found some annual differences in home range size, and there was some evidence that home range size was greater at night compared to daytime. There was strong inter-individual variation in home range size, which was not related to the species’ sexual size dimorphism and thus potential differences in resource use. Conclusions: Our results highlight that wintering Curlews on the Humber Estuary maintain small home ranges which vary strongly between individuals. Knowledge of the home range size of wintering waders is vital to inform management responses to the potential impacts of environmental changes such as sea-level rise and improving the efficacy of compensatory habitats

    SN 2009kf : a UV bright type IIP supernova discovered with Pan-STARRS 1 and GALEX

    Full text link
    We present photometric and spectroscopic observations of a luminous type IIP Supernova 2009kf discovered by the Pan-STARRS 1 (PS1) survey and detected also by GALEX. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000km/s at 61 days after discovery which is extremely high for a type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modelled with a black-body with a hot effective temperature (T ~16,000 K) and a large radius (R ~1x10^{15} cm). The bright bolometric and NUV luminosity, the lightcurve peak and plateau duration, the high velocities and temperatures suggest that 2009kf is a type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium (CSM). UV bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_NUV = -21.5 +/- 0.5 mag suggests such SNe could be discovered out to z ~2.5 in the PS1 survey.Comment: Accepted for publication in APJ

    Uses of innovative modeling tools within the implementation of the marine strategy framework directive

    Get PDF
    © 2016 Lynam, Uusitalo, Patrício, Piroddi, Queirós, Teixeira, Rossberg, Sagarminaga, Hyder, Niquil, Möllmann, Wilson, Chust, Galparsoro, Forster, Veríssimo, Tedesco, Revilla and Neville. In Europe and around the world, the approach to management of the marine environment has developed from the management of single issues (e.g., species and/or pressures) toward holistic Ecosystem Based Management (EBM) that includes aims to maintain biological diversity and protect ecosystem functioning. Within the European Union, this approach is implemented through the Marine Strategy Framework Directive (MSFD, 2008/56/EC). Integrated Ecosystem Assessment is required by the Directive in order to assess Good Environmental Status (GES). Ecological modeling has a key role to play within the implementation of the MSFD, as demonstrated here by case studies covering a range of spatial scales and a selection of anthropogenic threats. Modeling studies have a strong role to play in embedding data collected at limited points within a larger spatial and temporal scale, thus enabling assessments of pelagic and seabed habitat. Furthermore, integrative studies using food web and ecosystem models are able to investigate changes in food web functioning and biological diversity in response to changes in the environment and human pressures. Modeling should be used to: support the development and selection of specific indicators; set reference points to assess state and the achievement of GES; inform adaptive monitoring programs and trial management scenarios. The modus operandi proposed shows how ecological modeling could support the decision making process leading to appropriate management measures and inform new policy

    Pan-STARRS1 Discovery of Two Ultra-Luminous Supernovae at z ~ 0.9

    Get PDF
    We present the discovery of two ultra-luminous supernovae (SNe) at z ~ 0.9 with the Pan-STARRS1 Medium-Deep Survey. These SNe, PS1-10ky and PS1-10awh, are amongst the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_bol ~ -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time-series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10^51 erg. We find photospheric velocities of 12,000-19,000 km/s with no evidence for deceleration measured across ~3 rest-frame weeks around light-curve peak, consistent with the expansion of an optically-thick massive shell of material. We show that, consistent with findings for other ultra-luminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.Comment: Re-Submitted to Ap

    Nuclear power and coastal birds: predicting the ecological consequences of warm-water outflows

    Get PDF
    Local alteration of species abundance in natural communities due to anthropogenic impacts may have secondary, cascading effects on species at higher trophic levels. Such effects are typically hard to single out due to their ubiquitous nature and, therefore, may render impact assessment exercises difficult to undertake. Here we describe how we used empirical knowledge together with modelling tools to predict the indirect trophic effects of a future warm-water outflow on populations of shorebirds and wildfowl. Of the main potential benthic prey used by the birds in this instance, the clam Macoma balthica was the only species suspected to be adversely affected by a future increase of temperature. Various scenarios of decreases in prey energy content, simulating various degrees of temperature increase, were tested using an individual-based model, MORPH, in order to assess the effects on birds. The survival and body condition of eight of the 10 bird species modelled, dunlin, ringed plover, turnstone, redshank, grey plover, black-tailed godwit, oystercatcher and shelduck were shown to be not influenced even by the most conservative prey reduction scenarios. Most of these species are known to feed primarily on polychaete worms. For the few bivalve-feeding species, the larger size-classes of polychaete worms were predicted to be a sufficient alternative food. Only knot was predicted to have a lower survival under the two worst case scenario of decreased M. balthica energy content. We believe that this is the first time such predicted cascade effects from a future warm-water outflow have been shown

    Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans

    Get PDF
    Marine phytoplankton account for about 50% of all global net primary productivity (NPP). Active fluorometry, mainly Fast Repetition Rate fluorometry (FRRf), has been advocated as means of providing high resolution estimates of NPP. However, not measuring CO2-fixation directly, FRRf instead provides photosynthetic quantum efficiency estimates from which electron transfer rates (ETR) and ultimately CO2-fixation rates can be derived. Consequently, conversions of ETRs to CO2-fixation requires knowledge of the electron requirement for carbon fixation (Φe,C, ETR/CO2 uptake rate) and its dependence on environmental gradients. Such knowledge is critical for large scale implementation of active fluorescence to better characterise CO2-uptake. Here we examine the variability of experimentally determined Φe,C values in relation to key environmental variables with the aim of developing new working algorithms for the calculation of Φe,C from environmental variables. Coincident FRRf and 14C-uptake and environmental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, multivariate approach. Combining all studies, Φe,C varied between 1.15 and 54.2 mol e- (mol C)-1 with a mean of 10.9±6.91 mol e- mol C)-1. Although variability of Φe,C was related to environmental gradients at global scales, region-specific analyses provided far improved predictive capability. However, use of regional Φe,C algorithms requires objective means of defining regions of interest, which remains challenging. Considering individual studies and specific small-scale regions, temperature, nutrient and light availability were correlated with Φe,C albeit to varying degrees and depending on the study/region and the composition of the extant phytoplankton community. At the level of large biogeographic regions and distinct water masses, Φe,C was related to nutrient availability, chlorophyll, as well as temperature and/or salinity in most regions, while light availability was also important in Baltic Sea and shelf waters. The novel Φe,C algorithms provide a major step forward for widespread fluorometry-based NPP estimates and highlight the need for further studying the natural variability of Φe,C to verify and develop algorithms with improved accuracy. © 2013 Lawrenz et al

    Ecological significance of blue light stimulation of photosynthetic capacity in Laminaria spp. and other brown algae

    No full text
    ABSTRACT The transient stimulation of light-saturated photosynthesis In Laminaria digitata (Huds.) Lan~our, and L. saccharina (L.) Lamour., which has been observed following pulses of blue light, was found to persist when low irradiances of continuous blue light were given as a supplement to saturating irradiances of red or yellow light. The degree of stimulation was directly proportional to the logarithm of the irradiance of blue light, with a 50% response at 0.28 1.1mol m-&apos; S-&apos; and saturation above 1 pm01 m-&apos; S-&apos;. These irradiances represented about 0.2 % and 0.5 %, respectively, of the total irradiance incident on the plants. In natural underwater light fields, such low proportions of blue wavelengths would be found only close to, or below, the lower depth limit for Laminaria spp., where photosynthesis, if it occurred at all, would be light-limited and, therefore, not subject to blue light stimulation. Irradiances of blue light measured in the Laminaria zone during periods when the total irradiance was high enough to saturate photosynthesis were always higher than 1 pm01 m-&apos; S-&apos;, and photosynthesis by Laminaria spp. in simulated underwater light fields in the laboratory was not affected by additional blue light. Unlike Laminaria, other brown algae (e.g. Asperococcus. Ectocarpus) exhibited stimulation by blue light in irradiances of red light which are limiting for photosynthesis, and their photosynthetic rates can, therefore, be limited when blue light is present as a higher proportion of the total irradiance than for Lam~naria. However, these plants are mostly found in the littoral zone, and will rarely experience low blue light environments. The stimulation of photosynthetic capacity by blue light in brown algae occurs at such low irradiances of blue light that photosynthesis by these plants, in their natural habitats, is unlikely ever to be limited by a shortage of blue light

    Microscale Variability in Biomass and Photosynthetic Activity of Microphytobenthos During a Spring-Neap Tidal Cycle

    Get PDF
    Carbon fixation by microphytobenthic algae of intertidal flats often dominates the total primary production of turbid, temperate estuaries. Whilst remote sensing can accurately measure the spatial distribution of photosynthetic biofilms at the mesoscale (1–300 m), variability at smaller scales requires in-situ investigation. Here, changes in biomass and photosynthetic activity of microphytobenthos (MPB) at the micro-scale

    Long-Term Changes in the Abundance of Benthic Foraging Birds in a Restored Wetland

    Get PDF
    Estuaries have historically been subject to considerable habitat loss, and continue to be subjected to such in areas where the natural landward migration of intertidal habitats is constrained by hard coastal defences. Thus, in estuaries where direct (e.g., port development) or indirect (e.g., sea level rise) processes are predicted to threaten intertidal habitats and associated waterbird species, there is a regulatory requirement to produce compensatory intertidal habitats. Managed realignment (MR) is a shoreline management practise that is undertaken to build sustainable coastal defences and create intertidal habitats in estuaries. This nature-based solution brings multiple benefits in the form of carbon storage, increased resilience to flooding, and, potentially, the formation of new habitats, which is the topic of this study. A 75-ha site at the Paull Holme Strays (Humber Estuary, United Kingdom) was monitored over a 10-year period following MR to examine the change in the abundance of waterbirds in the chosen site in response to the physical processes occurring there. Using digital terrain models (DTMs) collected via light detection and ranging (LiDAR), we examined how four compensatory target species responded to changes in elevation after the creation of the site. It was shown that the very rapid accretion of estuarine sediment occurred in the first decade of the new re-created intertidal, which, over time, led to changes in the numbers of benthic foraging birds supported. Furthermore, elevation change was also driven by this sediment accretion, the rate of which depended on the initial bed elevation of the sectors within the site. Ten years after the recreation of the habitat, the spatial heterogeneity in the bed elevation remained high; however, the sectors with the lowest elevations accreted the most over the 10-year period. The foraging number of the four waterbird species that colonised the MR site significantly declined above a certain elevation, with this effect being most pronounced for the Eurasian curlew (Numenius arquata). The number of common shelducks (Tadorna tadorna), dunlins (Calidris alpina), and common redshanks (Tringa totanus) declined significantly after initial peaks 5–7 years after the creation of the site, reflecting the ongoing elevation changes. Thus, this study highlighted the need for long-term studies to understand how species respond to large-scale habitat construction. It can also aid in predicting the suitability of an MR site for waterbirds in the medium and long term
    corecore