80 research outputs found

    Evaluation of MTHFR C677T gene polymorphism and homocysteine level in coronary atherosclerotic disease

    Get PDF
    OBJECTIVE: The aim of this study is to determine the prevalence of C677T methylenetetrahydrofolate reductase (MTHFR) polymorphism and correlate it with plasma homocysteine levels in coronary artery disease (CAD). METHODS: Ninety-three patients with documented CAD from Hospital Universitário Oswaldo Cruz (Recife, PE, Brazil) and 108 healthy controls were evaluated. Homocysteine and folate levels were determined by HPLC and chemoluminescence, respectively, and lipid profile was considered. Genotyping was done by RFLP/PCR. RESULTS: The groups were homogeneous for the C677T polymorphisms. The homocysteine level in cases (11.7 µmol/L) was statistically different from that observed in controls (8.84 µmol/L, p< 0.05). It was also observed that 72% of the patients had homocysteine values above12 µmol/L while the control group presented only 32% in this range. There was no relationship between homozigosity for the C677T polymorphism and the homocysteine level (p= 0.634). We noticed statistical differences between folate levels from patients and controls (6.22 and 7.69 ng/dL, p< 0.05, respectively). However, there was no correlation between homocysteine and folate concentrations in the entire group (r= -0.202). Comparing cases and controls, the odds ratio (OR) when homocysteine is high and folate is low was OR= 11.9; CI 95%= 4.16-34.42, p< 0.01. CONCLUSION: A lack of correlation between C677T mutation and homocysteine level suggests that environmental factors and others genetic factors seem to exert more influence on homocysteine level in this population.OBJETIVO: O objetivo deste trabalho é determinar a prevalência do polimorfismo C677T do gene metilenotetraidrofolato redutase (MTHFR) e associá-la com a concentração plasmática de homocisteína plasmática na doença arterial coronariana (DAC). MÉTODOS: Foram avaliados 93 pacientes com DAC documentada, atendidos no Hospital Universitário Oswaldo Cruz (Recife, PE, Brasil), e 108 controles sem a doença. Foram determinados os perfis lipídicos de pacientes e controles. As concentrações plasmáticas de homocisteína e folato foram determinadas por HPLC e quimioluminescência, respectivamente. A genotipagem foi realizada por RFLP/PCR. RESULTADOS: Os grupos de pacientes e controles foram homogêneos quanto aos perfis genéticos do polimorfismo investigado. Nos pacientes, as concentrações plasmáticas médias de homocisteina (11,7 ± 4,4 µmol/L) e de folato (6,22 ± 3,0 ng/dL) foram estatisticamente diferentes daquelas observadas nos controles (8,84 ± 3,2 µmol/L e 7,69 ± 3,1 ng/dL, respectivamente), ao nível de significância de 0,05. Entretanto, não houve correlação entre concentração plasmática de homocisteína e folato nos pacientes (r= -0,202). Não foi observada associação entre a homozigosidade 677TT para MTHFR e a concentração plasmática de homocisteína sérica (p= 0,634). A comparação dos casos e controles que apresentaram simultaneamente alta concentração plasmática de homocisteína e baixa concentração de folato, resultou numa razão de chance superior à de cada variável analisada independentemente (RC= 11,9; IC 95%= 4,16-34,42, p< 0,01). CONCLUSÕES: A mutação C677T não parece ser um fator genético importante capaz de explicar a hiperhomocisteinemia moderada observada nos pacientes com DAC. Outros fatores, ambientais e genéticos, devem ser investigados.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo (UNIFESP) Departamento de Pediatria Laboratório de Erros Inatos de MetabolismoUniversidade de Pernambuco ICB Departamento de Ciências FisiológicasUniversidade de São Paulo Faculdade de Medicina de Ribeirão Preto Hospital das ClínicasUNIFESP, Depto. de Pediatria Laboratório de Erros Inatos de MetabolismoSciEL

    A quantitative PCR-electrochemical genosensor test for the screening of biotech crops

    Get PDF
    The design of screening methods for the detection of genetically modified organisms (GMOs) in food would improve the efficiency in their control. We report here a PCR amplification method combined with a sequence-specific electrochemical genosensor for the quantification of a DNA sequence characteristic of the 35S promoter derived from the cauliflower mosaic virus (CaMV). Specifically, we employ a genosensor constructed by chemisorption of a thiolated capture probe and p-aminothiophenol gold surfaces to entrap on the sensing layer the unpurified PCR amplicons, together with a signaling probe labeled with fluorescein. The proposed test allows for the determination of a transgene copy number in both hemizygous (maize MON810 trait) and homozygous (soybean GTS40-3-2) transformed plants, and exhibits a limit of quantification of at least 0.25% for both kinds of GMO lines

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
    corecore