72 research outputs found
Neutron-rich fragments produced by in-flight fission of U-238
The production cross sections of neutron-rich fission residues in reactions induced by U-238 projectiles at 950A MeV impinging on Pb and Be targets are investigated at the Fragment Separator at GSI. These two targets allow us to investigate fission processes induced by two reaction mechanisms, Coulomb and nuclear excitations, and to study the role of these mechanisms in the neutron excess of the final fragments.Peer reviewe
Protein tyrosine phosphatases in glioma biology
Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPΎ, DEP1, RPTPΌ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells
<p>Abstract</p> <p>Background</p> <p>Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit <it>in vitro </it>and <it>in vivo </it>the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop.</p> <p>Methods</p> <p>A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. <it>In vitro</it>, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. <it>In vivo</it>, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. <it>In vivo </it>anti-angiogenic effect was confirmed using a mouse Matrigelâą plug assay.</p> <p>Results</p> <p>Using pull down experiments, we identified the HARP receptors RPTPÎČ/ζ, ALK and nucleolin as P111-136 binding proteins. <it>In vitro</it>, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an <it>in vivo </it>Matrigelâą plug assay in mice</p> <p>Conclusions</p> <p>Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on <it>in vitro </it>and <it>in vivo </it>growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPÎČ/ζ, nucleolin). <it>In vivo</it>, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.</p
Diffuse glioma growth: a guerilla war
In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent âsupply linesâ for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted (âsearch & destroyâ) tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies
Multidetector Computed Tomography Imaging:Effect of Sparse Sampling and Iterative Reconstruction on Trabecular Bone Microstructure
Multidetector computed tomography-based trabecular bone microstructure analysis ensures promising results in fracture risk prediction caused by osteoporosis. Because multidetector computed tomography is associated with high radiation exposure, its clinical routine use is limited. Hence, in this study, we investigated in 11 thoracic midvertebral specimens whether trabecular texture parameters are comparable derived from (1) images reconstructed using statistical iterative reconstruction (SIR) and filtered back projection as criterion standard at different exposures (80, 150, 220, and 500 mAs) and (2) from SIR-based sparse sampling projections (12.5%, 25%, 50%, and 100%) and equivalent exposures as criterion standard. Twenty-four texture features were computed, and those that showed similar values between (1) filtered back projection and SIR at the different exposure levels and (2) sparse sampling and equivalent exposures and reconstructed with SIR were identified. These parameters can be of equal value in determining trabecular bone microstructure with lower radiation exposure using sparse sampling and SIR
The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs
RNA-binding proteins (RBPs) exert a broad range of biological functions. To explore the scope of RBPs across eukaryotic evolution, we determined the in vivo RBP repertoire of the yeast Saccharomyces cerevisiae and identified 678 RBPs from yeast and additionally 729 RBPs from human hepatocytic HuH-7 cells. Combined analyses of these and recently published data sets define the core RBP repertoire conserved from yeast to man. Conserved RBPs harbour defined repetitive motifs within disordered regions, which display striking evolutionary expansion. Only 60% of yeast and 73% of the human RBPs have functions assigned to RNA biology or structural motifs known to convey RNA binding, and many intensively studied proteins surprisingly emerge as RBPs (termed âenigmRBPsâ), including almost all glycolytic enzymes, pointing to emerging connections between gene regulation and metabolism. Analyses of the mitochondrial hydroxysteroid dehydrogenase (HSD17B10) uncover the RNA-binding specificity of an enigmRBP
- âŠ