6 research outputs found

    Major histocompatibility complex variation at class II DQA locus in the brown hare (Lepus europaeus)

    No full text
    The major histocompatability complex (MHC) is a multigene family of receptors that bind and present antigenic peptides to T-cells. Genes of the MHC are characterized by an outstanding genetic polymorphism, which is considered to be maintained by positive selection. Sites involved in peptide binding form binding pockets (P) that are collectively termed the peptide-binding region (PBR). In this study, we examined the level of MHC genetic diversity within and among natural populations of brown hare (Lepus europaeus) from Europe and Anatolia choosing for analysis of the second exon of the DQA locus, one of the most polymorphic class II loci. We aimed at an integrated population genetic analysis of L. europeaus by (i) correlating MHC polymorphism to genetic variability and phylogenetic status estimated previously from maternally (mtDNA) and biparentally (allozymes, microsatellites) inherited loci; and (ii) comparing full-length exon amino acid polymorphism with functional polymorphism in the PBR and the binding pockets P1, P6 and P9. A substantial level of DQA exon 2 polymorphism was detected with two completely different set of alleles between the Anatolian and European populations. However, the phylogeny of full-length exon 2 Leeu-DQA alleles did not show a strong phylogeographic signal. The presence of balancing selection was supported by a statistically significant excess of nonsynonymous substitutions over synonymous in the PBR and a trans-species pattern of evolution detected after phylogenetic reconstruction. The differentiating patterns detected between genetic and functional polymorphism, i.e. the number and the distribution of pocket variants within and among populations, indicated a hierarchical action of selection pressures

    Multispectral Imaging using a Stereo Camera: Concept, Design and Assessment

    Get PDF
    This is the copy of journal's version originally published in EURASIP Journal on Advances in Signal Processing 2011:57. Reprinted with permission of EURASIP: http://asp.eurasipjournals.com/This paper proposes a one-shot six-channel multispectral color image acquisition system using a stereo camera and a pair of optical filters. The two filters from the best pair selected from among readily available filters such that they modify the sensitivities of the two cameras in such a way that they produce optimal estimation of spectral reflectance and/or color are placed in front of the two lenses of the stereo camera. The two images acquired from the stereo camera are then registered for pixel-to-pixel correspondence. The spectral reflectance and/or color at each pixel on the scene are estimated from the corresponding camera outputs in the two images. Both simulations and experiments have shown that the proposed system performs well both spectrally and colorimetrically. Since it acquires the multispectral images in one shot, the proposed system can solve the limitations of slow and complex acquisition process and costliness of the state of the art multispectral imaging systems, leading to its possible uses in widespread applications
    corecore