217 research outputs found

    The TRPC6 inhibitor, larixyl acetate, is effective in protecting against traumatic brain injury-induced systemic endothelial dysfunction

    Get PDF
    BACKGROUND: The incidence of traumatic brain injuries (TBIs) is on the rise in the USA. Concussions, or mild TBIs without skull fracture, account for about 75% of all TBIs. Mild TBIs (mTBIs) lead to memory and cognitive deficits, headaches, intraocular pressure rises, axonal degeneration, neuroinflammation, and an array of cerebrovascular dysfunctions, including increased vascular permeability and decreased cerebral blood flow. It has been recently reported that besides vascular dysfunction in the cerebral circulation, mTBI may also cause a significant impairment of endothelial function in the systemic circulation, at least within mesenteric microvessels. In this study, we investigated whether mTBI affects endothelial function in aortas and determined the contribution of transient receptor potential canonical (TRPC) channels to modulating mTBI-associated endothelial dysfunction. METHODS: We used a model of closed-head mTBI in C57BL/6, 129S, 129S-C57BL/6-F2 mice, and 129S-TRPC1 and 129S-C57BL/6-TRPC6 knockout mice to determine the effect of mTBI on endothelial function in mouse aortas employing ex vivo isometric tension measurements. Aortic tissue was also analyzed using immunofluorescence and qRT-PCR for TRPC6 expression following mTBI. RESULTS: We show that in various strains of mice, mTBI induces a pronounced and long-lasting endothelial dysfunction in the aorta. Ablation of TRPC6 protects mice from mTBI-associated aortic endothelial dysfunction, while TRPC1 ablation does not impact brain injury-induced endothelial impairment in the aorta. Consistent with a role of TRPC6 activation following mTBI, we observed improved endothelial function in wild type control mice subjected to mTBI following 7-day in vivo treatment with larixyl acetate, an inhibitor of TRPC6 channels. Conversely, in vitro treatment with the pro-inflammatory endotoxin lipopolysaccharide, which activates endothelial TRPC6 in a Toll-like receptor type 4 (TLR4)-dependent manner, worsened aortic endothelial dysfunction in wild type mice. Lipopolysaccharide treatment in vitro failed to elicit endothelial dysfunction in TRPC6 knockout mice. No change in endothelial TRPC6 expression was observed 7 days following TBI. CONCLUSIONS: These data suggest that TRPC6 activation may be critical for inducing endothelial dysfunction following closed-head mTBI and that pharmacological inhibition of the channel may be a feasible therapeutic strategy for preventing mTBI-associated systemic endothelial dysfunction

    Microenvironmental Geometry Guides Platelet Adhesion and Spreading: A Quantitative Analysis at the Single Cell Level

    Get PDF
    To activate clot formation and maintain hemostasis, platelets adhere and spread onto sites of vascular injury. Although this process is well-characterized biochemically, how the physical and spatial cues in the microenvironment affect platelet adhesion and spreading remain unclear. In this study, we applied deep UV photolithography and protein micro/nanostamping to quantitatively investigate and characterize the spatial guidance of platelet spreading at the single cell level and with nanoscale resolution. Platelets adhered to and spread only onto micropatterned collagen or fibrinogen surfaces and followed the microenvironmental geometry with high fidelity and with single micron precision. Using micropatterned lines of different widths, we determined that platelets are able to conform to micropatterned stripes as thin as 0.6 µm and adopt a maximum aspect ratio of 19 on those protein patterns. Interestingly, platelets were also able to span and spread over non-patterned regions of up to 5 µm, a length consistent with that of maximally extended filopodia. This process appears to be mediated by platelet filopodia that are sensitive to spatial cues. Finally, we observed that microenvironmental geometry directly affects platelet biology, such as the spatial organization and distribution of the platelet actin cytoskeleton. Our data demonstrate that platelet spreading is a finely-tuned and spatially-guided process in which spatial cues directly influence the biological aspects of how clot formation is regulated

    Front Mol Neurosci

    Get PDF
    The endocannabinoid system (ECS) acts as a negative feedback mechanism to suppress synaptic transmission and plays a major role in a diverse range of brain functions including, for example, the regulation of mood, energy balance, and learning and memory. The function and dysfunction of the ECS are strongly implicated in multiple psychiatric, neurological, and neurodegenerative diseases. Cannabinoid type 1 receptor (CB1R) is the most abundant G protein-coupled receptor (GPCR) expressed in the brain and, as for any synaptic receptor, CB1R needs to be in the right place at the right time to respond appropriately to changing synaptic circumstances. While CB1R is found intracellularly throughout neurons, its surface expression is highly polarized to the axonal membrane, consistent with its functional expression at presynaptic sites. Surprisingly, despite the importance of CB1R, the interacting proteins and molecular mechanisms that regulate the highly polarized distribution and function of CB1R remain relatively poorly understood. Here we set out what is currently known about the trafficking pathways and protein interactions that underpin the surface expression and axonal polarity of CB1R, and highlight key questions that still need to be addressed. In the original article, we neglected to include the funders BBSRC, (BB/R00787X/1) to JH and KWandWellcome Trust, (105384/Z/14/A) to JH and AE. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated. © 2020 Fletcher-Jones, Hildick, Evans, Nakamura, Henley and Wilkinson

    Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs

    Get PDF
    Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS

    Cross-sectional survey of older peoples' views related to influenza vaccine uptake

    Get PDF
    BACKGROUND: The population's views concerning influenza vaccine are important in maintaining high uptake of a vaccine that is required yearly to be effective. Little is also known about the views of the more vulnerable older population over the age of 74 years. METHODS: A cross-sectional survey of community dwelling people aged 75 years and over wh, previous participant was conducted using a postal questionnaire. Responses were analysed by vaccine uptake records and by socio-demographic and medical factors. RESULTS: 85% of men and 75% of women were vaccinated against influenza in the previous year. Over 80% reported being influenced by a recommendation by a health care worker. The most common reason reported for non uptake was good health (44%), or illness considered to be due to the vaccine (25%). An exploration of the crude associations with socio-economic status suggested there may be some differences in the population with these two main reasons. 81% of people reporting good health lived in owner occupied housing with central heating vs. 63% who did not state this as a reason (p = 0.04), whereas people reporting ill health due to the vaccine was associated with poorer social circumstances. 11% lived in the least deprived neighbourhood compared to 36% who did not state this as a reason (p = 0.05) and were less likely to be currently married than those who did not state this as a reason (25% vs 48% p = 0.05). CONCLUSION: Vaccine uptake was high, but non uptake was still noted in 1 in 4 women and 1 in 7 men aged over 74 years. Around 70% reported they would not have the vaccine in the following year. The divergent reasons for non-uptake, and the positive influence from a health care worker, suggests further uptake will require education and encouragement from a health care worker tailored towards the different views for not having influenza vaccination. Non-uptake of influenza vaccine because people viewed themselves as in good health may explain the modest socio-economic differentials in influenza vaccine uptake in elderly people noted elsewhere. Reporting of ill-health due to the vaccine may be associated with a different, poorer background

    Learning to live with interfering neighbours : the influence of time of learning and level of encoding on word learning

    Get PDF
    New vocabulary is consolidated offline, particularly during sleep; however, the parameters that influence consolidation remain unclear. Two experiments investigated effects of exposure level and delay between learning and sleep on adults' consolidation of novel competitors (e.g. BANARA) to existing words (e.g. BANANA). Participants made speeded semantic decisions (i.e. a forced choice: natural versus man-made) to the existing words, with the expectation that novel word learning would inhibit responses due to lexical competition. This competition was observed, particularly when assessed after sleep, for both standard and high exposure levels (10 and 20 exposures per word; Experiment 1). Using a lower exposure level (five exposures; Experiment 2), no post-sleep enhancement of competition was observed, despite evidence of consolidation when explicit knowledge of novel word memory was tested. Thus, when encoding is relatively weak, consolidation-related lexical integration is particularly compromised. There was no evidence that going to bed soon after learning is advantageous for overnight consolidation; however, there was some preliminary suggestion that longer gaps between learning and bed-onset were associated with better explicit memory of novel words one week later, but only at higher levels of exposure. These findings suggest that while lexical integration can occur overnight, weaker lexical traces may not be able to access overnight integration processes in the sleeping brain. Furthermore, the finding that longer-term explicit memory of stronger (but not weaker) traces benefit from periods of wake following learning deserves examination in future research

    Cough and its importance in COPD

    Get PDF
    Patients with COPD most frequently complain of breathlessness and cough and these are both increased during exacerbations. Studies have generally focused on quality of life during end-stage disease, where breathlessness becomes dominant and cough less important. There are very little data on the frequency and severity of cough in COPD or its impact on quality of life at different stages of disease. Little is known about the factors that influence objective cough counts in COPD. Cough may be a marker for progressive disease in milder COPD patients who continue to smoke, and it may be useful in case-finding for milder disease in the community. The cough reflex sensitivity is heightened in COPD compared with healthy volunteers and similar to that in subjects with asthma. The degree of airflow obstruction does not predict cough reflex sensitivity or objective cough counts, implying an independent process. Effective treatments for cough in COPD have not yet been identified. Improved outcome measures of cough, a better understanding of cough in the natural history of COPD, and its importance to patients are needed

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Light Microsopy Module, International Space Station Premier Automated Microscope

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese
    corecore