24 research outputs found

    LVNet: Light-Weight Model for Left Ventricle Segmentation for Short Axis Views in Echocardiographic Imaging

    Get PDF
    Lightweight segmentation models are becoming more popular for fast diagnosis on small and low cost medical imaging devices. This study focuses on the segmentation of the left ventricle (LV) in cardiac ultrasound (US) images. A new lightweight model [LV network (LVNet)] is proposed for segmentation, which gives the benefits of requiring fewer parameters but with improved segmentation performance in terms of Dice score (DS). The proposed model is compared with state-of-the-art methods, such as UNet, MiniNetV2, and fully convolutional dense dilated network (FCdDN). The model proposed comes with a post-processing pipeline that further enhances the segmentation results. In general, the training is done directly using the segmentation mask as the output and the US image as the input of the model. A new strategy for segmentation is also introduced in addition to the direct training method used. Compared with the UNet model, an improvement in DS performance as high as 5% for segmentation with papillary (WP) muscles was found, while showcasing an improvement of 18.5% when the papillary muscles are excluded. The model proposed requires only 5% of the memory required by a UNet model. LVNet achieves a better trade-off between the number of parameters and its segmentation performance as compared with other conventional models.</p

    Contribution of Lensed SCUBA Galaxies to the Cosmic Infrared Background

    Get PDF
    The surface density of submillimeter (sub-mm) galaxies as a function of flux, usually termed the source number counts, constrains models of the evolution of the density and luminosity of starburst galaxies. At the faint end of the distribution, direct detection and counting of galaxies are not possible. However, gravitational lensing by clusters of galaxies allows detection of sources which would otherwise be too dim to study. We have used the largest catalog of sub-mm-selected sources along the line of sight to galaxy clusters to estimate the faint end of the 850 micron number counts; integrating to S = 0.10 mJy the equivalent flux density at 850 microns is v I_{v} = 0.24 +/- 0.03 nW/m^2/sr. This provides a lower limit to the extragalactic far-infrared background and is consistent with direct estimates of the full intensity from the FIRAS. The results presented here can help to guide strategies for upcoming surveys carried out with single dish sub-mm instruments.Comment: v3 matches published manuscript; small grammatical and typographical changes from v

    Measurement of in vitro cardiac deformation by means of 3D digital image correlation and ultrasound 2D speckle-tracking echocardiography

    Get PDF
    Ultrasound-based 2D speckle-tracking echocardiography (US-2D-STE) is increasingly used to assess the functionality of the heart. In particular, the analysis of cardiac strain plays an important role in the identification of several cardiovascular diseases. However, this imaging technique presents some limitations associated with its operating principle that result in low accuracy and reproducibility of the measurement. In this study, an experimental framework for multimodal strain imaging in an in vitro porcine heart was developed. Specifically, the aim of this work was to analyse displacement and strain in the heart by means of 3D digital image correlation (3D-DIC) and US-2D-STE. Over a single cardiac cycle, displacement values obtained from the two techniques were in strong correlation, although systematically larger displacements were observed with 3D-DIC. Notwithstanding an absolute comparison of the strain measurements was not possible to achieve between the two methods, maximum principal strain directions computed with 3D-DIC were consistent with the longitudinal and circumferential strain distribution measured with US-2D-STE. 3D-DIC confirmed its high repeatability in quantifying displacement and strain over multiple cardiac cycles, unlike US-2D-STE which is affected by accumulated errors over time (i.e. drift). To conclude, this study demonstrates the potential of 3D-DIC to perform dynamic measurement of displacement and strain during heart deformations and supports future applications of this method in ex vivo beating heart platforms, which replicate more fully the complex contraction of the heart

    Microwave spectro-polarimetry of matter and radiation across space and time

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-07-29, accepted 2021-03-02, registration 2021-03-03, pub-print 2021-06, pub-electronic 2021-07-03, online 2021-07-03Publication status: PublishedAbstract: This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the entire Hubble volume, exploit CMB temperature and polarisation anisotropies down to fundamental limits, and track energy injection and absorption into the radiation background across cosmic times by measuring spectral distortions of the CMB blackbody emission. In addition to its exceptional capability for cosmology and fundamental physics, such a survey would provide an unprecedented view of microwave emissions at sub-arcminute to few-arcminute angular resolution in hundreds of frequency channels, a data set that would be of immense legacy value for many branches of astrophysics. We propose that this survey be carried out with a large space mission featuring a broad-band polarised imager and a moderate resolution spectro-imager at the focus of a 3.5 m aperture telescope actively cooled to about 8K, complemented with absolutely-calibrated Fourier Transform Spectrometer modules observing at degree-scale angular resolution in the 10–2000 GHz frequency range. We propose two observing modes: a survey mode to map the entire sky as well as a few selected wide fields, and an observatory mode for deeper observations of regions of specific interest

    Ultrasound strain imaging of the failing and supported heart: experimental and clinical studies

    Get PDF

    Ultrasound-Based Estimation of Fibre-Directional Strain: A Simulation Study

    Get PDF
    Left ventricular (LV) strains are typically represented with respect to the imaging axes. Contraction within the myocardium occurs along myofibres, which vary in orientation. Therefore, a mismatch exists between the direction in which strain is calculated and that in which contraction occurs. In this study, ultrasound-based fibre orientation and 3-D strain estimation were combined to calculate the fibre-directional strain. Three-dimensional ultrasound volumes were created by simulating simple geometrical phantoms and a phantom based on a finite-element (FE) model of LV mechanics. Fibre-like structures were embedded within tissue-mimicking scatterers. Strains were applied to the numerical phantom, whereas the FE phantom was deformed based on the LV model. Fibre orientation was accurately estimated for both phantoms. There was poor agreement in axial and elevational strains (root mean square error = 29.9% and 12.3%), but good agreement in lateral and fibre-directional strains (root mean square error = 6.4% and 5.9% respectively), which aligned in the midwall. Simplifications to reduce computational complexity caused poor axial and elevational strain estimation. However, calculation of fibre-directional strain from single-modality ultrasound volumes was successful. Further studies, in ex vivo setups because of the fundamental limitations of currently available transducers, are needed to verify real-world performance of the method

    Strain-based discoordination imaging during exercise in heart failure with reduced ejection fraction: Feasibility and reproducibility

    Get PDF
    PURPOSE: Various parameters of mechanical dyssynchrony have been proposed to improve patient selection criteria for cardiac resynchronization therapy, but sensitivity and specificity are lacking. However, echocardiographic parameters are consistently investigated at rest, whereas heart failure (HF) symptoms predominately manifest during submaximal exertion. Although strain-based predictors of response are promising, feasibility and reproducibility during exercise has yet to be demonstrated. METHODS: Speckle-tracking echocardiography was performed in patients with HF at two separate visits. Echocardiography was performed at rest, during various exercise intensity levels, and during recovery from exercise. Systolic rebound stretch of the septum (SRSsept), systolic shortening, and septal discoordination index (SDI) were calculated. RESULTS: Echocardiography was feasible in about 70-80% of all examinations performed during exercise. Of these acquired views, 84% of the cine-loops were suitable for analysis of strain-based mechanical dyssynchrony. Test-retest variability and intra- and inter-operator reproducibility at 30% and 60% of the ventilatory threshold (VT) were about 2.5%. SDI improved in the majority of patients at 30% and 60% of the VT, with moderate to good agreement between both intensity levels. CONCLUSION: Although various challenges remain, exercise echocardiography with strain analysis appears to be feasible in the majority of patients with dyssynchronous heart failure. Inter- and intra-observer agreement of SRSsept and SDI up to 60% of the VT were comparable to resting values. During exercise, the extent of SDI was variable, suggesting a heterogeneous response to exercise. Further research is warranted to establish its clinical significance

    LVNet: Light-Weight Model for Left Ventricle Segmentation for Short Axis Views in Echocardiographic Imaging

    Get PDF
    Lightweight segmentation models are becoming more popular for fast diagnosis on small and low cost medical imaging devices. This study focuses on the segmentation of the left ventricle (LV) in cardiac ultrasound (US) images. A new lightweight model [LV network (LVNet)] is proposed for segmentation, which gives the benefits of requiring fewer parameters but with improved segmentation performance in terms of Dice score (DS). The proposed model is compared with state-of-the-art methods, such as UNet, MiniNetV2, and fully convolutional dense dilated network (FCdDN). The model proposed comes with a post-processing pipeline that further enhances the segmentation results. In general, the training is done directly using the segmentation mask as the output and the US image as the input of the model. A new strategy for segmentation is also introduced in addition to the direct training method used. Compared with the UNet model, an improvement in DS performance as high as 5% for segmentation with papillary (WP) muscles was found, while showcasing an improvement of 18.5% when the papillary muscles are excluded. The model proposed requires only 5% of the memory required by a UNet model. LVNet achieves a better trade-off between the number of parameters and its segmentation performance as compared with other conventional models
    corecore