341 research outputs found

    Root microbiome modulates plant growth promotion induced by low doses of glyphosate

    Get PDF
    Glyphosate is a commonly used herbicide with a broad action spectrum. However, at sublethal doses, glyphosate can induce plant growth, a phenomenon known as hormesis. Most glyphosate hormesis studies have been performed under microbe-free or reduced-microbial-diversity conditions; only a few were performed in open systems or agricultural fields, which include a higher diversity of soil microorganisms. Here, we investigated how microbes affect the8 hormesis induced by low doses of glyphosate. To this end, we used Arabidopsis thaliana and a well-characterized synthetic bacterial community of 185 strains (SynCom) that mimics the root-associated microbiome of Arabidopsis. We found that a dose of 3.6 x 10-6 g acid equivalent/liter (low dose of glyphosate, or LDG) produced an ~14% increase in the shoot dry weight (i.e., hormesis) of uninoculated plants. Unexpectedly, in plants inoculated with the SynCom, LDG reduced shoot dry weight by 17%. We found that LDG enriched two Firmicutes and two Burkholderia strains in the roots. These specific strains are known to act as root growth inhibitors (RGI) in monoassociation assays. We tested the link between RGI and shoot dry weight reduction in LDG by assembling a new synthetic community lacking RGI strains. Dropping RGI strains out of the community restored growth induction by LDG. Finally, we showed that individual RGI strains from a few specific phyla were sufficient to switch the response to LDG from growth promotion to growth inhibition. Our results indicate that glyphosate hormesis was completely dependent on the root microbiome composition, specifically on the presence of root growth inhibitor strains

    A single bacterial genus maintains root growth in a complex microbiome

    Get PDF
    Plants grow within a complex web of species that interact with each other and with the plant1–10. These interactions are governed by a wide repertoire of chemical signals, and the resulting chemical landscape of the rhizosphere can strongly affect root health and development7–9,11–18. Here, to understand how interactions between microorganisms influence root growth in Arabidopsis, we established a model system for interactions between plants, microorganisms and the environment. We inoculated seedlings with a 185-member bacterial synthetic community, manipulated the abiotic environment and measured bacterial colonization of the plant. This enabled us to classify the synthetic community into four modules of co-occurring strains. We deconstructed the synthetic community on the basis of these modules, and identified interactions between microorganisms that determine root phenotype. These interactions primarily involve a single bacterial genus (Variovorax), which completely reverses the severe inhibition of root growth that is induced by a wide diversity of bacterial strains as well as by the entire 185-member community. We demonstrate that Variovorax manipulates plant hormone levels to balance the effects of our ecologically realistic synthetic root community on root growth. We identify an auxin-degradation operon that is conserved in all available genomes of Variovorax and is necessary and sufficient for the reversion of root growth inhibition. Therefore, metabolic signal interference shapes bacteria–plant communication networks and is essential for maintaining the stereotypic developmental programme of the root. Optimizing the feedbacks that shape chemical interaction networks in the rhizosphere provides a promising ecological strategy for developing more resilient and productive crops

    Application of Global Positioning System and questionnaires data for the study of driver behavior on two-lane rural roads

    Full text link
    This paper is a preprint of a paper accepted by IET Intelligent Transport Systems and is subject to Institution of Engineering and Technology Copyright. When the final version is published, the copy of record will be available at IET Digital LibraryMethodologies based on naturalistic observation provide the most accurate data for studying drivers' behaviour. This study presents a new methodology to obtain naturalistic data related to drivers' behaviour in a road segment. It is based on the combination of using global positioning system data and drivers' questionnaires. The continuous speed profiles along a road segment and the characteristics of drivers, of their trips and the type of their vehicles can be obtained for a great amount of drivers. It has already been successfully used for several studies, such as the development of models to estimate operating speed profile in two-lane rural road segments; or the characterisation of driving styles. These operating speed models have been the key for the development of a new geometric design consistency model, allowing an easier road safety evaluation. Besides, knowledge on the human factors that influence speed choice may be useful for road safety media campaigns and education programs designers, and also for the improvement of intelligent driver assistance systems.The authors thank 'Centre for Studies and Experimentation of Public Works (CEDEX)' of the 'Spanish Ministry of Public Works' that partially subsidizes the research. We also wish to thank to the 'General Directorate of Public Works, Urban Projects and Housing' of the 'Infrastructure, Territory and Environment Department' of the 'Valencian Government', to the 'Valencian Provincial Council' and to the 'General Directorate of Traffic' of the 'Ministry of the Interior' for their cooperation in field data gathering.Pérez Zuriaga, AM.; Camacho Torregrosa, FJ.; Campoy Ungria, JM.; García García, A. (2013). Application of Global Positioning System and questionnaires data for the study of driver behavior on two-lane rural roads. IET Intelligent Transport Systems. 7(2):182-189. doi:10.1049/iet-its.2012.0151S18218972Fourie, M., Walton, D., & Thomas, J. A. (2011). Naturalistic observation of drivers’ hands, speed and headway. Transportation Research Part F: Traffic Psychology and Behaviour, 14(5), 413-421. doi:10.1016/j.trf.2011.04.009Gibreel, G. M., Easa, S. M., & El-Dimeery, I. A. (2001). Prediction of Operating Speed on Three-Dimensional Highway Alignments. Journal of Transportation Engineering, 127(1), 21-30. doi:10.1061/(asce)0733-947x(2001)127:1(21)Fitzpatrick, K., & Collins, J. M. (2000). Speed-Profile Model for Two-Lane Rural Highways. Transportation Research Record: Journal of the Transportation Research Board, 1737(1), 42-49. doi:10.3141/1737-06Bella, F. (2008). Driving simulator for speed research on two-lane rural roads. Accident Analysis & Prevention, 40(3), 1078-1087. doi:10.1016/j.aap.2007.10.015Van Nes, N., Houtenbos, M., & Van Schagen, I. (2008). Improving speed behaviour: the potential of in-car speed assistance and speed limit credibility. IET Intelligent Transport Systems, 2(4), 323. doi:10.1049/iet-its:20080036Warner, H. W., & Åberg, L. (2006). Drivers’ decision to speed: A study inspired by the theory of planned behavior. Transportation Research Part F: Traffic Psychology and Behaviour, 9(6), 427-433. doi:10.1016/j.trf.2006.03.004Goldenbeld, C., & van Schagen, I. (2007). The credibility of speed limits on 80km/h rural roads: The effects of road and person(ality) characteristics. Accident Analysis & Prevention, 39(6), 1121-1130. doi:10.1016/j.aap.2007.02.012Zuriaga, A. M. P., García, A. G., Torregrosa, F. J. C., & D’Attoma, P. (2010). Modeling Operating Speed and Deceleration on Two-Lane Rural Roads with Global Positioning System Data. Transportation Research Record: Journal of the Transportation Research Board, 2171(1), 11-20. doi:10.3141/2171-02Ottesen, J. L., & Krammes, R. A. (2000). Speed-Profile Model for a Design-Consistency Evaluation Procedure in the United States. Transportation Research Record: Journal of the Transportation Research Board, 1701(1), 76-85. doi:10.3141/1701-10Park, P. Y., Miranda-Moreno, L. F., & Saccomanno, F. F. (2010). Estimation of speed differentials on rural highways using hierarchical linear regression models. Canadian Journal of Civil Engineering, 37(4), 624-637. doi:10.1139/l10-002Wasielewski, P. (1984). Speed as a measure of driver risk: Observed speeds versus driver and vehicle characteristics. Accident Analysis & Prevention, 16(2), 89-103. doi:10.1016/0001-4575(84)90034-4Williams, A. F., Kyrychenko, S. Y., & Retting, R. A. (2006). Characteristics of speeders. Journal of Safety Research, 37(3), 227-232. doi:10.1016/j.jsr.2006.04.001Lajunen, T., Karola, J., & Summala, H. (1997). Speed and Acceleration as Measures of Driving Style in Young Male Drivers. Perceptual and Motor Skills, 85(1), 3-16. doi:10.2466/pms.1997.85.1.3Af Wåhlberg, A. E. (2006). Speed choice versus celeration behavior as traffic accident predictor. Journal of Safety Research, 37(1), 43-51. doi:10.1016/j.jsr.2005.10.01

    The Plant Microbiome: From Ecology to Reductionism and beyond

    Get PDF
    Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plant microbiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments

    Socioeconomic benefit to individuals of achieving 2020 targets for four neglected tropical diseases controlled/eliminated by innovative and intensified disease management

    Get PDF
    __Background__ The control or elimination of neglected tropical diseases (NTDs) has targets defined by the WHO for 2020, reinforced by the 2012 London Declaration. We estimated the economic impact to individuals of meeting these targets for human African trypanosomiasis, leprosy, visceral leishmaniasis and Chagas disease, NTDs controlled or eliminated by innovative and intensified disease management (IDM). __Methods__ A systematic literature review identified information on productivity loss and out-of-pocket payments (OPPs) related to these NTDs, which were combined with projections of the number of people suffering from each NTD, country and year for 2011±2020 and 2021±2030. The ideal scenario in which the WHO's 2020 targets are met was compared with a counterfactual scenario that assumed the situation of 1990 stayed unaltered. Economic benefit equaled the difference between the two scenarios. Values are reported in 2005 US, purchasing power parity-adjusted, discounted at 3% per annum from 2010. Probabilistic sensitivity analyses were used to quantify the degree of uncertainty around the base-case impact estimate. __Results__ The total global productivity gained for the four IDM-NTDs was I 23.1 (I15.9±I 15.9 ±I 34.0) billion in 2011±2020 and I35.9(I 35.9 (I 25.0 ±I51.9)billionin2021±2030(2.5thand97.5thpercentilesinbrackets),correspondingtoUS 51.9) billion in 2021±2030 (2.5th and 97.5th percentiles in brackets), corresponding to US 10.7 billion (US7.4±US 7.4 ±US 15.7) and US16.6billion(US 16.6 billion (US 11.6 ±US24.0).ReductioninOPPswasI 24.0). Reduction in OPPs was I 14 billion (US6.7billion)andI 6.7 billion) and I 18 billion (US$ 10.4 billion) for the same periods. __Conclusions__ We faced important limitations to our work, such as finding no OPPs for leprosy. We had to combine limited data from various sources, heterogeneous background, and of variable quality. Nevertheless, based on conservative assumptions and subsequent uncertainty analyses, we estimate that the benefits of achieving the targets are considerable. Under plausible scenarios, the economic benefits far exceed the necessary investments by endemic country governments and their development partners. Given the higher frequency of NTDs among the poorest households, these investments represent good value for money in the effort to improve well-being, distribute the world's prosperity more equitably and reduce inequity

    The Socioeconomic Benefit to Individuals of Achieving the 2020 Targets for Five Preventive Chemotherapy Neglected Tropical Diseases

    Get PDF
    Background: Lymphatic filariasis (LF), onchocerciasis, schistosomiasis, soil-transmitted helminths (STH) and trachoma represent the five most prevalent neglected tropical diseases (NTDs). They can be controlled or eliminated by means of safe and cost-effective interventions delivered through programs of Mass Drug Administration (MDA)—also named Preventive Chemotherapy (PCT). The WHO defined targets for NTD control/elimination by 2020, reinforced by the 2012 London Declaration, which, if achieved, would result in dramatic health gains. We estimated the potential economic benefit of achieving these targets, focusing specifically on productivity and out-of-pocket payments. Methods: Productivity loss was calculated by combining disease frequency with productivity loss from the disease, from the perspective of affected individuals. Productivity gain was calculated by deducting the total loss expected in the target achievement scenario from the loss in a counterfactual scenario where it was assumed the pre-intervention situation in 1990 regarding NTDs would continue unabated until 2030. Economic benefits from out-of-pocket payments (OPPs) were calculated similarly. Benefits are reported in 2005 US(purchasingpowerparityadjustedanddiscountedat3Results:TheeconomicbenefitfromproductivitygainwasestimatedtobeI (purchasing power parity-adjusted and discounted at 3% per annum from 2010). Sensitivity analyses were used to assess the influence of changes in input parameters. Results: The economic benefit from productivity gain was estimated to be I251 billion in 2011–2020 and I313billionin20212030,considerablygreaterthanthetotalOPPsavertedofI313 billion in 2021–2030, considerably greater than the total OPPs averted of I0.72 billion and I0.96billioninthesameperiods.ThenetbenefitisexpectedtobeUS0.96 billion in the same periods. The net benefit is expected to be US 27.4 and US$ 42.8 for every dollar invested during the same periods. Impact varies between NTDs and regions, since it is determined by disease prevalence and extent of disease-related p

    Resonance capture cross section of 207Pb

    Get PDF
    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.Comment: 7 pages, 3 figures, to be published in Phys. Rev.

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore