776 research outputs found
Shallow-Water Nitrox Diving, the NASA Experience
NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA
Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study
Epidemiological data are often fragmented, partial, and/or ambiguous and unable to yield the desired level of understanding
of infectious disease dynamics to adequately inform control measures. Here, we show how the information contained in
widely available serology data can be enhanced by integration with less common type-specific data, to improve the understanding
of the transmission dynamics of complex multi-species pathogens and host communities. Using brucellosis in
Northern Tanzania as a case-study, we developed a latent process model based on serology data obtained from the
field, to reconstruct Brucella transmission dynamics. We were able to identify sheep and goats as a more likely source
of human and animal infection than cattle; however, the highly cross-reactive nature of Brucella spp. meant that it was
not possible to determine which Brucella species (B. abortus or B. melitensis) is responsible for human infection. We
extended our model to integrate simulated serology and typing data, and show that although serology alone can identify
the host source of human infection under certain restrictive conditions, the integration of even small amounts (5%) of
typing data can improve understanding of complex epidemiological dynamics. We show that data integration will often
be essential when more than one pathogen is present and when the distinction between exposed and infectious individuals
is not clear from serology data. With increasing epidemiological complexity, serology data become less informative.
However, we show how this weakness can be mitigated by integrating such data with typing data, thereby enhancing
the inference from these data and improving understanding of the underlying dynamics
Faint NUV/FUV Standards from Swift/UVOT, GALEX and SDSS Photometry
At present, the precision of deep ultraviolet photometry is somewhat limited
by the dearth of faint ultraviolet standard stars. In an effort to improve this
situation, we present a uniform catalog of eleven new faint (u sim17)
ultraviolet standard stars. High-precision photometry of these stars has been
taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and
combined with new data from the Swift Ultraviolet Optical Telescope to provide
precise photometric measures extending from the Near Infrared to the Far
Ultraviolet. These stars were chosen because they are known to be hot (20,000 <
T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be
photometrically stable. This careful selection allows us to compare the
combined photometry and Sloan spectroscopy to models of pure hydrogen
atmospheres to both constrain the underlying properties of the white dwarfs and
test the ability of white dwarf models to predict the photometric measures. We
find that the photometry provides good constraint on white dwarf temperatures,
which demonstrates the ability of Swift/UVOT to investigate the properties of
hot luminous stars. We further find that the models reproduce the photometric
measures in all eleven passbands to within their systematic uncertainties.
Within the limits of our photometry, we find the standard stars to be
photometrically stable. This success indicates that the models can be used to
calibrate additional filters to our standard system, permitting easier
comparison of photometry from heterogeneous sources. The largest source of
uncertainty in the model fitting is the uncertainty in the foreground reddening
curve, a problem that is especially acute in the UV.Comment: Accepted for publication in Astrophysical Journal. 31 pages, 13
figures, electronic tables available from ApJ or on reques
Lifespan extension and the doctrine of double effect
Recent developments in biogerontology—the study of the biology of ageing—suggest that it may eventually be possible to intervene in the human ageing process. This, in turn, offers the prospect of significantly postponing the onset of age-related diseases. The biogerontological project, however, has met with strong resistance, especially by deontologists. They consider the act of intervening in the ageing process impermissible on the grounds that it would (most probably) bring about an extended maximum lifespan—a state of affairs that they deem intrinsically bad. In a bid to convince their deontological opponents of the permissibility of this act, proponents of biogerontology invoke an argument which is grounded in the doctrine of double effect. Surprisingly, their argument, which we refer to as the ‘double effect argument’, has gone unnoticed. This article exposes and critically evaluates this ‘double effect argument’. To this end, we first review a series of excerpts from the ethical debate on biogerontology in order to substantiate the presence of double effect reasoning. Next, we attempt to determine the role that the ‘double effect argument’ is meant to fulfil within this debate. Finally, we assess whether the act of intervening in ageing actually can be justified using double effect reasoning
The Arabidopsis Framework Model version 2 predicts the organism-level effects of circadian clock gene mis-regulation
Predicting a multicellular organism’s phenotype quantitatively from its genotype is challenging, as genetic effects must propagate across scales. Circadian clocks are intracellular regulators that control temporal gene expression patterns and hence metabolism, physiology and behaviour. Here we explain and predict canonical phenotypes of circadian timing in a multicellular, model organism. We used diverse metabolic and physiological data to combine and extend mathematical models of rhythmic gene expression, photoperiod-dependent flowering, elongation growth and starch metabolism within a Framework Model for the vegetative growth of Arabidopsis thaliana, sharing the model and data files in a structured, public resource. The calibrated model predicted the effect of altered circadian timing upon each particular phenotype in clock-mutant plants under standard laboratory conditions. Altered night-time metabolism of stored starch accounted for most of the decrease in whole-plant biomass, as previously proposed. Mobilisation of a secondary store of malate and fumarate was also mis-regulated, accounting for any remaining biomass defect. The three candidate mechanisms tested did not explain this organic acid accumulation. Our results link genotype through specific processes to higher-level phenotypes, formalising our understanding of a subtle, pleiotropic syndrome at the whole-organism level, and validating the systems approach to understand complex traits starting from intracellular circuits
Small-scale societies exhibit fundamental variation in the role of intentions in moral judgment
Intent and mitigating circumstances play a central role in moral
and legal assessments in large-scale industrialized societies. Although
these features of moral assessment are widely assumed to be universal, to date, they have only been studied in a narrow range of societies. We show that there is substantial cross-cultural variation among eight traditional small-scale societies (ranging from hunter-gatherer to pastoralist to horticulturalist) and two Western societies (one urban, one rural) in the extent to which intent and mitigating circumstances influence moral judgments.
Although participants in all societies took such factors into account to some degree, they did so to very different extents, varying in both the types of considerations taken into account and the types of violations to which such considerations were applied. The particular patterns of assessment characteristic of large-scale industrialized
societies may thus reflect relatively recently culturally evolved norms rather than inherent features of human moral judgment
Bounds on SCFTs from Conformal Perturbation Theory
The operator product expansion (OPE) in 4d (super)conformal field theory is
of broad interest, for both formal and phenomenological applications. In this
paper, we use conformal perturbation theory to study the OPE of nearly-free
fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE
of a chiral operator of dimension with its complex
conjugate always contains an operator of dimension less than . Our
bounds apply to Banks-Zaks fixed points and their generalizations, as we
illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change
Presence and Persistence of Ebola or Marburg Virus in Patients and Survivors: A Rapid Systematic Review
Background: The 2013-15 Ebola outbreak was unprecedented due to sustainedtransmission within urban environments and thousands of survivors. In 2014 the World Health Organization stated that there was insufficient evidence to give definitive guidance about which body fluids are infectious and when they pose a risk to humans. We report a rapid systematic review of published evidence on the presence of filoviruses in body fluids of infected people and survivors. Methods: Scientific articles were screened for information about filovirus in human body fluids. The aim was to find primary data that suggested high likelihood of actively infectious filovirus in human body fluids (viral RNA). Eligible infections were from Marburg virus (MARV or RAVV) and Zaire, Sudan, Taï Forest and Bundibugyo species of Ebola. [1] Cause of infection had to be laboratory confirmed (in practice either tissue culture or RT-PCR tests), or evidenced by compatible clinical history with subsequent positivity for filovirus antibodies or inflammatory factors. Data were extracted and summarized narratively. Results: 6831 unique articles were found, and after screening, 33 studies were eligible. For most body fluid types there were insufficient patients to draw strong conclusions, and prevalence of positivity was highly variable. Body fluids taken >16 days after onset were usually negative. In the six studies that used both assay methods RT-PCR tests for filovirus RNA gave positive results about 4 times more often than tissue culture. Conclusions: Filovirus was reported in most types of body fluid, but not in every sample from every otherwise confirmed patient. Apart from semen, most non-blood, RT-PCR positive samples are likely to be culture negative and so possibly of low infectious risk. Nevertheless, it is not apparent how relatively infectious many body fluids are during or after illness, even when culture-positive, not least because most test results come from more severe cases. Contact with blood and blood-stained body fluids remains the major risk for disease transmission because of the known high viral loads in blood
Variations of training load, monotony, and strain and dose-response relationships with maximal aerobic speed, maximal oxygen uptake, and isokinetic strength in professional soccer players
This study aimed to identify variations in weekly training load, training monotony, and training strain across a 10-week period (during both, pre- and in-season phases); and to analyze the dose-response relationships between training markers and maximal aerobic speed (MAS), maximal oxygen uptake, and isokinetic strength. Twenty-seven professional soccer players (24.9±3.5 years old) were monitored across the 10-week period using global positioning system units. Players were also tested for maximal aerobic speed, maximal oxygen uptake, and isokinetic strength before and after 10 weeks of training. Large positive correlations were found between sum of training load and extension peak torque in the right lower limb (r = 0.57, 90%CI[0.15;0.82]) and the ratio agonist/antagonist in the right lower limb (r = 0.51, [0.06;0.78]). It was observed that loading measures fluctuated across the period of the study and that the load was meaningfully associated with changes in the fitness status of players. However, those magnitudes of correlations were small-to-large, suggesting that variations in fitness level cannot be exclusively explained by the accumulated load and loading profile
- …