59 research outputs found

    Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically

    Get PDF
    Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies

    Label-free Chemical Characterization of Polarized Immune Cells in vitro and Host Response to Implanted Bio-instructive Polymers in vivo Using 3D OrbiSIMS

    Get PDF
    The Three-dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) is a secondary ion mass spectrometry instrument, a combination of a Time of Flight (ToF) instrument with an Orbitrap analyzer. The 3D OrbiSIMS technique is a powerful tool for metabolic profiling in biological samples. This can be achieved at subcellular spatial resolution, high sensitivity, and high mass-resolving power coupled with MS/MS analysis. Characterizing the metabolic signature of macrophage subsets within tissue sections offers great potential to understand the response of the human immune system to implanted biomaterials. Here, we describe a protocol for direct analysis of individual cells after in vitro differentiation of naïve monocytes into M1 and M2 phenotypes using cytokines. As a first step in vivo, we investigate explanted silicon catheter sections as a medical device in a rodent model of foreign body response. Protocols are presented to allow the host response to different immune instructive materials to be compared. The first demonstration of this capability illustrates the great potential of direct cell and tissue section analysis for in situ metabolite profiling to probe functional phenotypes using molecular signatures. Details of the in vitro cell approach, materials, sample preparation, and explant handling are presented, in addition to the data acquisition approaches and the data analysis pipelines required to achieve useful interpretation of these complex spectra. This method is useful for in situ characterization of both in vitro single cells and ex vivo tissue sections. This will aid the understanding of the immune response to medical implants by informing the design of immune-instructive biomaterials with positive interactions. It can also be used to investigate a broad range of other clinically relevant therapeutics and immune dysregulations

    Immune-Instructive Polymers Control Macrophage Phenotype and Modulate the Foreign Body Response In Vivo

    Get PDF
    © 2020 The Author(s) Implantation of medical devices can result in inflammation. A large library of polymers is screened, and a selection found to promote macrophage differentiation towards pro- or anti-inflammatory phenotypes. The bioinstructive properties of these materials are validated within a rodent model. By identifying novel materials with immune-instructive properties, the relationship between material-immune cell interactions could be investigated, and this offers exciting possibilities to design novel bioinstructive materials that can be used for numerous clinical applications including medical implants

    Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids

    Get PDF
    A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in modulation of the host immune response and are the major cells responsible for persistent inflammatory reactions to implanted biomaterials. We investigate two novel immune-instructive polymers that stimulate pro- or anti-inflammatory responses from macrophages in vitro. These also modulate in vivo foreign body responses (FBR) when implanted subcutaneously in mice as coatings on biomedical grade silicone rubber. The tissue surrounding the implant is mechanically sectioned and imaged to assess the response of the polymers compared to silicone rubber. Immunofluorescent staining reveals responses consistent with pro- or anti-inflammatory responses previously described for these polymers. We apply 3D OrbiSIMS analysis to provide spatial analysis of the metabolite signature in the tissue surrounding the implant for the first time, providing molecular histology insight into the metabolite response in the host tissue. For the pro-inflammatory coating, monoacylglycerols (MG) and diacylglycerols (DG) are observed at increased intensity, while for the anti-inflammatory coating the number of phospholipid species detected decrease and pyridine and pyrimidine levels were elevated. These findings link to observations of small molecule signature from single cell studies of M2 macrophages in vitro where cell and tissue ion intensities were found to correlate suggesting potential for prediction. This illustrates the power of metabolite characterization by the 3D OrbiSIMS to gain insight into the mechanism of bio-instructive materials as medical devices and to inform on the FBR to biomaterials

    Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity

    Get PDF
    Catheter-associated urinary tract infection (CAUTI) is the commonest hospital-acquired infection, accounting for over 100,000 hospital admissions within the USA annually. Biomaterials and processes intended to reduce the risk of bacterial colonization of the catheters for long-term users have not been successful, mainly because of the need for long duration of activity in flow conditions. Here we report the results of impregnation of urinary catheters with a combination of rifampicin, sparfloxacin and triclosan. In flow experiments, the antimicrobial catheters were able to prevent colonization by common uropathogens Proteus mirabilis, Staphylococcus aureus and Escherichia coli for 7 to 12 weeks in vitro compared with 1–3 days for other, commercially available antimicrobial catheters currently used clinically. Resistance development was minimized by careful choice of antimicrobial combinations. Drug release profiles and distribution in the polymer, and surface analysis were also carried out and the process had no deleterious effect on the mechanical performance of the catheter or its balloon. The antimicrobial catheter therefore offers for the first time a means of reducing infection and its complications in long-term urinary catheter users

    Microparticles Decorated with Cell‐Instructive Surface Chemistries Actively Promote Wound Healing

    Get PDF
    Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic non-healing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing. We screened 315 different polymer surfaces to identify candidates which actively drove fibroblasts towards either pro- or anti-proliferative functional phenotypes. Fibroblast-instructive chemistries were identified, which we synthesized into surfactants to fabricate easy to administer microparticles for direct application to diabetic wounds. The pro-proliferative microfluidic derived particles were able to successfully promote neovascularisation, granulation tissue formation and wound closure after a single application to the wound bed. These active novel 3D bio-instructive microparticles show great potential as a route to reducing the burden of chronic wounds

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Effects of human footprint and biophysical factors on the body-size structure of fished marine species

    Get PDF
    Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.publishedVersio

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar
    corecore