12 research outputs found

    Seeking for Genetic Signature of Radiosensitivity- Methods for Data Analysis

    Get PDF
    Abstract. The aim of the study was to develop a data analysis strategy capable of discovering the genetic background of radiosensitivity. Radiosensitivity is the relative predisposition of cells, tissues, organs or organisms to the harmful effect of radiation. Effects of radiation include the mutation of DNA . Identification of polymorphisms and genes responsible for an organism's radiosensitivity increases the knowledge about the cell cycle and the mechanism of radiosensitivity, possibly providing the researchers with a better understanding of the process of carcinogenesis. To obtain this information, mathematical modelling and data mining methods were used

    NOD Scid Gamma Mice Are Permissive to Allogeneic HSC Transplantation without Prior Conditioning

    No full text
    Scid hematopoietic stem cells (HSCs) have an intrinsic defect in their maintenance within the bone marrow (BM) niche which facilitates HSC transplantation without the absolute requirement of prior conditioning. Nevertheless, NOD scid mice have a significantly altered life span due to early development of thymic lymphomas, which compromises the ability to study the long-term fate of exogenous HSCs and their progeny. Here, we present data on the transplantation of HSCs into NOD scid gamma (NSG) mice to achieve long-term engraftment without prior conditioning. We transplanted allogeneic HSCs constitutively expressing the mCherry fluorescent marker into age-matched NSG mice and assessed donor chimerism 6 months post-transplantation. All transplanted NSG mice showed long-term myeloid and lymphoid cell chimerism. Also, in vivo irradiated HSCs showed long-term engraftment, although overall white blood cell (WBC) donor chimerism was lower compared with non-irradiated HSCs. Using this novel NSG transplantation model, we will be able to study the effects of low dose in vivo X-ray exposure on the long-term fate of HSCs, without the requirement of prior radio-ablation of the recipient, and thus leaving the recipient’s BM microenvironment uncompromised. In conclusion, we demonstrated for the first time that allogeneic HSCs from a different inbred strain can compete for niches in the BM compartment of NSG mice

    Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice.

    No full text
    International audienceWhile the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire

    Spi1 R235C point mutation confers hypersensitivity to radiation-induced acute myeloid leukemia in mice

    No full text
    Summary: Ionizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene Spi1. We generated a heterozygous CBA Spi1 R235 mouse (CBASpm/+) which develops de novo AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation. These effects are reduced on an AML-resistant C57Bl6 genetic background. CBASpm/Gfp reporter mice show increased Gfp expression, indicating compensation for Spm-induced Spi1 haploinsufficiency. Del2 is always detected in both de novo and rAMLs, indicating that biallelic Spi1 mutation is required for AML. CBASpm/+ mice show that a single Spm modification is sufficient for initiating AML development with complete penetrance, via the “two-hit” mechanism and this is accelerated by IR exposure. Similar SPI1/PU.1 polymorphisms in humans could potentially lead to enhanced susceptibility to IR following medical or environmental exposure

    The Influence of the CTIP Polymorphism, Q418P, on Homologous Recombination and Predisposition to Radiation-Induced Tumorigenesis (mainly rAML) in Mice

    No full text
    Exposure to ionizing radiation increases the incidence of acute myeloid leukemia (AML), which has been diagnosed in Japanese atomic bombing survivors, as well as patients treated with radiotherapy. The genetic basis for susceptibility to radiation-induced AML is not well characterized. We previously identified a candidate murine gene for susceptibility to radiation-induced AML (rAML): C-terminal binding protein (CTBP)-interacting protein (CTIP)/retinoblastoma binding protein 8 (RBBP8). This gene is essential for embryonic development, double-strand break (DSB) resection in homologous recombination (HR) and tumor suppression. In the 129S2/SvHsd mouse strain, a nonsynonymous single nucleotide polymorphism (nsSNP) in Ctip, Q418P, has been identified. We investigated the role of Q418P in radiation-induced carcinogenesis and its effect on CTIP function in HR. After whole-body exposure to 3 Gy of X rays, 11 out of 113 (9.7%) 129S2/SvHsd mice developed rAML. Furthermore, 129S2/SvHsd mouse embryonic fibroblasts (MEFs) showed lower levels of recruitment of HR factors, Rad51 and replication protein A (RPA) to radiation-induced foci, compared to CBA/H and C57BL/6 MEFs, isolated from rAML-sensitive and resistant strains, respectively. Mitomycin C and alpha particles induced lower levels of sister chromatid exchanges in 129S2/SvHsd cells compared to CBA/H and C57BL/6. Our data demonstrate that Q418P nsSNP influences the efficiency of CTIP function in HR repair of DNA DSBs in vitro and in vivo, and appears to affect susceptibility to rAML

    A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity

    No full text
    Ionizing radiation induces DNA Double-Strand Breaks (DSBs), which activate the ATM/CHEK2/p53 pathway leading to cell cycle arrest and apoptosis through transcription of genes including CDKN1A (p21) and BBC3 (PUMA). This pathway prevents genomic instability and tumorigenesis as demonstrated in heritable syndromes [e.g., Ataxia Telangiectasia (AT); Li-Fraumeni syndrome (LFS)]. Here, a simple assay based on gene expression in peripheral blood to measure accurately ATM/CHEK2/p53 pathway activity is described. The expression of p21, Puma and Sesn2 was determined in blood from mice with different gene copy numbers of Atm, Trp53 (p53), Chek2 or Arf and in human blood and mitogen stimulated T-lymphocyte (MSTL) cultures from AT, AT carriers, LFS patients and controls, both before and after ex vivo ionizing irradiation. Mouse Atm/Chek2/p53 activity was highly dependent on the copy number of each gene except Arf. In human MSTL, an AT case, AT carriers and LFS patients showed responses distinct from healthy donors. The relationship between gene copy number and transcriptional induction upon radiation was linear for p21 and Puma and correlated well with cancer incidence in p53 variant mice. This reliable blood test provides an assay to determine ATM/CHEK2/p53 pathway activity and demonstrates the feasibility of assessing the activity of this essential cancer protection pathway in simple assays. These findings may have implications for the individualized prediction of cancer susceptibility

    Established and Emerging Methods of Biological Dosimetry

    No full text
    corecore