176 research outputs found

    Postinfective bowel dysfunction following Campylobacter enteritis is characterised by reduced microbiota diversity and impaired microbiota recovery

    Get PDF
    Objectives Persistent bowel dysfunction following gastroenteritis (postinfectious (PI)-BD) is well recognised, but the associated changes in microbiota remain unclear. Our aim was to define these changes after gastroenteritis caused by a single organism, Campylobacter jejuni, examining the dynamic changes in the microbiota and the impact of antibiotics. Design A single-centre cohort study of 155 patients infected with Campylobacter jejuni. Features of the initial illness as well as current bowel symptoms and the intestinal microbiota composition were recorded soon after infection (visit 1, 80 days later (visits 2 and 3). Microbiota were assessed using 16S rRNA sequencing. Results PI-BD was found in 22 of the 99 patients who completed the trial. The cases reported significantly looser stools, with more somatic and gastrointestinal symptoms. Microbiota were assessed in 22 cases who had significantly lower diversity and altered microbiota composition compared with the 44 age-matched and sex-matched controls. Moreover 60 days after infection, cases showed a significantly lower abundance of 23 taxa including phylum Firmicutes, particularly in the order Clostridiales and the family Ruminoccocaceae, increased Proteobacteria abundance and increased levels of Fusobacteria and Gammaproteobacteria. The microbiota changes were linked with diet; higher fibre consumption being associated with lower levels of Gammaproteobacteria. Conclusion The microbiota of PI-BD patients appeared more disturbed by the initial infection compared with the microbiota of those who recovered. The prebiotic effect of high fibre diets may inhibit some of the disturbances seen in PI-BD.Peer reviewe

    Understanding Anthropological Understanding: for a merological anthropology

    Get PDF
    In this paper I argue for a merological anthropology in which ideas of ‘partiality’ and ‘practical adequacy’ provide a way out of the impasse of relativism which is implied by post-modernism and the related abandonment of a concern with ‘truth’. Ideas such as ‘aptness’ and ‘faithfulness’ enable us to re-establish empirical foundations without having to espouse a simple realism which has been rightly criticised. Ideas taken from ethnomethodology, particularly the way we bootstrap from ‘practical adequacy’ to ‘warrants for confidence’ point to a merological anthropology in which we recognize that we do not and cannot know everything, but that we can have reasons for being confident in the little we know

    The Magnitude and Duration of Late Ordovician–Early Silurian Glaciation

    Get PDF
    Understanding ancient climate changes is hampered by the inability to disentangle trends in ocean temperature from trends in continental ice volume. We used carbonate “clumped” isotope paleothermometry to constrain ocean temperatures, and thereby estimate ice volumes, through the Late Ordovician–Early Silurian glaciation. We find tropical ocean temperatures of 32° to 37°C except for short-lived cooling by ~5°C during the final Ordovician stage. Evidence for ice sheets spans much of the study interval, but the cooling pulse coincided with a glacial maximum during which ice volumes likely equaled or exceeded those of the last (Pleistocene) glacial maximum. This cooling also coincided with a large perturbation of the carbon cycle and the Late Ordovician mass extinction

    The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium

    Get PDF
    The deep waters of the open ocean represent a major frontier in exploration and scientific understanding. However, modern technological and computational tools are making the deep ocean more accessible than ever before by facilitating increasingly sophisticated studies of deep ocean ecosystems. Here, we describe some of the cutting-edge technologies that have been employed by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND; www.deependconsortium.org) Consortium to study the biodiverse fauna and dynamic physical-chemical environment of the offshore Gulf of Mexico (GoM) from 0 to 1,500 m

    MESSENGER at Mercury: Early Orbital Operations

    Get PDF
    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20 deg. S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation

    Mapping interactions between the RNA chaperone FinO and its RNA targets

    Get PDF
    Bacterial conjugation is regulated by two-component repression comprising the antisense RNA FinP, and its protein co-factor FinO. FinO mediates base-pairing of FinP to the 5′-untranslated region (UTR) of traJ mRNA, which leads to translational inhibition of the transcriptional activator TraJ and subsequent down regulation of conjugation genes. Yet, little is known about how FinO binds to its RNA targets or how this interaction facilitates FinP and traJ mRNA pairing. Here, we use solution methods to determine how FinO binds specifically to its minimal high affinity target, FinP stem–loop II (SLII), and its complement SLIIc from traJ mRNA. Ribonuclease footprinting reveals that FinO contacts the base of the stem and the 3′ single-stranded tails of these RNAs. The phosphorylation or oxidation of the 3′-nucleotide blocks FinO binding, suggesting FinO binds the 3′-hydroxyl of its RNA targets. The collective results allow the generation of an energy-minimized model of the FinO–SLII complex, consistent with small-angle X-ray scattering data. The repression complex model was constrained using previously reported cross-linking data and newly developed footprinting results. Together, these data lead us to propose a model of how FinO mediates FinP/traJ mRNA pairing to down regulate bacterial conjugation

    BioDeepTime : a database of biodiversity time series for modern and fossil assemblages

    Get PDF
    We thank the Paleosynthesis Project and the Volkswagen Stiftung for funding that supported this project (Az 96 796). M.C.R. acknowledges the German Research Foundation (DFG) for funding through the Cluster of Excellence ‘The Ocean Floor – Earth's Uncharted Interface’ (EXC 2077, grant no. 390741603). E.E.S. acknowledges funding from Leverhulme Trust grant RPG-201170, the Leverhulme Prize and the National Science Research Council grant NE/V011405/1. Q.J.L. and L.N. acknowledge support from the Youth Innovation Promotion Association (2019310) and the Chinese Academy of Sciences (CAS-WX2021SF-0205). A.M.P. acknowledges funding from the Leverhulme Trust through research grant RPG-2019-402. M.D. acknowledges funding from Leverhulme Trust through the Leverhulme Centre for Anthropocene Biodiversity (RC-2018-021) and a research grant (RPG-2019-402), and the European Union (ERC coralINT, 101044975). L. H. L. acknowledges funding from the European Research Council (macroevolution.abc ERC grant no. 724324). K.H.P acknowledges funding from the National Science Foundation Graduate Research Fellowship Program (DGE-2139841). H.H.M.H. acknowledges support from Peter Buck Postdoc Fellowship, Smithsonian Institution. A.T. acknowledges funding from the Slovak Research and Development Agency (APVV 22-0523) and the Slovak Scientific Grant Agency (VEGA 02/0106/23).Motivation We have little understanding of how communities respond to varying magnitudes and rates of environmental perturbations across temporal scales. BioDeepTime harmonizes assemblage time series of presence and abundance data to help facilitate investigations of community dynamics across timescales and the response of communities to natural and anthropogenic stressors. BioDeepTime includes time series of terrestrial and aquatic assemblages of varying spatial and temporal grain and extent from the present-day to millions of years ago. Main Types of Variables Included BioDeepTime currently contains 7,437,847 taxon records from 10,062 assemblage time series, each with a minimum of 10 time steps. Age constraints, sampling method, environment and taxonomic scope are provided for each time series. Spatial Location and Grain The database includes 8752 unique sampling locations from freshwater, marine and terrestrial ecosystems. Spatial grain represented by individual samples varies from quadrats on the order of several cm2 to grid cells of ~100 km2. Time Period and Grain BioDeepTime in aggregate currently spans the last 451?million years, with the 10,062 modern and fossil assemblage time series ranging in extent from years to millions of years. The median extent of modern time series is 18.7?years and for fossil series is 54,872?years. Temporal grain, the time encompassed by individual samples, ranges from days to tens of thousands of years. Major Taxa and Level of Measurement The database contains information on 28,777 unique taxa with 4,769,789 records at the species level and another 271,218 records known to the genus level, including time series of benthic and planktonic foraminifera, coccolithophores, diatoms, ostracods, plants (pollen), radiolarians and other invertebrates and vertebrates. There are to date 7012 modern and 3050 fossil time series in BioDeepTime. Software Format SQLite, Comma-separated values.Publisher PDFPeer reviewe

    Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster

    Get PDF
    Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods
    corecore