30 research outputs found

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy

    Supplementary Material for: Variation in Human Brains May Facilitate Evolutionary Change toward a Limited Range of Phenotypes

    No full text
    Individual variation is the foundation for evolutionary change, but little is known about the nature of normal variation between brains. Phylogenetic variation across mammalian brains is characterized by high intercorrelations in brain region volumes, distinct allometric scaling for each brain region and the relative independence of olfactory and limbic structure volumes from the rest of the brain. Previous work examining brain variation in individuals of some domesticated species showed that these three features of phylogenetic variation were mirrored in individual variation. We extend this analysis to the human brain and 10 of its subdivisions (e.g., isocortex and hippocampus) by using magnetic resonance imaging scans of 90 human brains ranging between 16 and 25 years of age. Human brain variation resembles both the individual variation seen in other species and variation observed across mammalian species, i.e., the relative differences in the slopes of each brain region compared to medulla size within humans and between mammals are concordant, and limbic structures scale with relative independence from other brain regions. This nonrandom pattern of variation suggests that developmental programs channel the variation available for selection

    Critical periods and catastrophic interference effects in the development of self-organizing feature maps

    No full text
    The use of self-organizing feature maps (SOFM) in models of cognitive development has frequently been associated with explanations of critical or sensitive periods. By contrast, error-driven connectionist models of development have been linked with catastrophic interference between new knowledge and old knowledge. We introduce a set of simulations that systematically evaluate the conditions under which SOFMs demonstrate critical/sensitive periods in development versus those under which they display interference effects. We explored the relative contribution of network parameters (for example, whether learning rate and neighbourhood reduce across training), the representational resources available to the network, and the similarity between old and new knowledge in determining the functional plasticity of the maps. The SOFMs that achieved the best discrimination and topographic organization also exhibited sensitive periods in development while showing lower plasticity and hence limited interference. However, fast developing, coarser SOFMs also produced topologically organized representations, while permanently retaining their plasticity. We argue that the impact of map organization on behaviour must be interpreted in terms of the cognitive processes that the map is driving
    corecore