127 research outputs found

    Hedonic and incentive signals for body weight control

    Get PDF
    Here we review the emerging neurobiological understanding of the role of the brain’s reward system in the regulation of body weight in health and in disease. Common obesity is characterized by the over-consumption of palatable/rewarding foods, reflecting an imbalance in the relative importance of hedonic versus homeostatic signals. The popular ‘incentive salience theory’ of food reward recognises not only a hedonic/pleasure component (‘liking’) but also an incentive motivation component (‘wanting’ or ‘reward-seeking’). Central to the neurobiology of the reward mechanism is the mesoaccumbal dopamine system that confers incentive motivation not only for natural rewards such as food but also by artificial rewards (eg. addictive drugs). Indeed, this mesoaccumbal dopamine system receives and integrates information about the incentive (rewarding) value of foods with information about metabolic status. Problematic over-eating likely reflects a changing balance in the control exerted by hypothalamic versus reward circuits and/or it could reflect an allostatic shift in the hedonic set point for food reward. Certainly, for obesity to prevail, metabolic satiety signals such as leptin and insulin fail to regain control of appetitive brain networks, including those involved in food reward. On the other hand, metabolic control could reflect increased signalling by the stomach-derived orexigenic hormone, ghrelin. We have shown that ghrelin activates the mesoaccumbal dopamine system and that central ghrelin signalling is required for reward from both chemical drugs (eg alcohol) and also from palatable food. Future therapies for problematic over-eating and obesity may include drugs that interfere with incentive motivation, such as ghrelin antagonists

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    Body composition impacts appetite regulation in middle childhood. A prospective study of Norwegian community children

    Get PDF
    Background Research suggests a role for both fat mass and muscle mass in appetite regulation, but the longitudinal relationships between them have not yet been examined in children. The present study therefore aimed to explore the prospective relationships between fat mass, muscle mass and the appetitive traits food responsiveness and satiety responsiveness in middle childhood. Methods Food responsiveness and satiety responsiveness were measured using the parent-reported Children’s Eating Behavior Questionnaire in a representative sample of Norwegian 6 year olds, followed up at 8 and 10 years of age (n = 807). Body composition was measured by bioelectrical impedance. Results Applying a structural equation modeling framework we found that higher fat mass predicted greater increases in food responsiveness over time, whereas greater muscle mass predicted decreases in satiety responsiveness. This pattern was consistent both from ages 6 to 8 and from ages 8 to 10 years. Conclusions Our study is the first to reveal that fat mass and muscle mass predict distinct changes in different appetitive traits over time. Replication of findings in non-European populations are needed, as are studies of children in other age groups. Future studies should also aim to reveal the underlying mechanisms

    Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: A functional neuroimaging study

    Get PDF
    BACKGROUND/OBJECTIVES: Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. SUBJECTS/METHODS: In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. RESULTS: Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). CONCLUSIONS: Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.International Journal of Obesity advance online publicatio

    Unsaturated Fatty Acids Revert Diet-Induced Hypothalamic Inflammation in Obesity

    Get PDF
    Background: In experimental models, hypothalamic inflammation is an early and determining factor in the installation and progression of obesity. Pharmacological and gene-based approaches have proven efficient in restraining inflammation and correcting the obese phenotypes. However, the role of nutrients in the modulation of hypothalamic inflammation is unknown. Methodology/Principal Findings: Here we show that, in a mouse model of diet-induced obesity, partial substitution of the fatty acid component of the diet by flax seed oil (rich in C18:3) or olive oil (rich in C18:1) corrects hypothalamic inflammation, hypothalamic and whole body insulin resistance, and body adiposity. In addition, upon icv injection in obese rats, both v3 and v9 pure fatty acids reduce spontaneous food intake and body mass gain. These effects are accompanied by the reversal of functional and molecular hypothalamic resistance to leptin/insulin and increased POMC and CART expressions. In addition, both, v3 and v9 fatty acids inhibit the AMPK/ACC pathway and increase CPT1 and SCD1 expression in the hypothalamus. Finally, acute hypothalamic injection of v3 and v9 fatty acids activate signal transduction through the recently identified GPR120 unsaturated fatty acid receptor. Conclusions/Significance: Unsaturated fatty acids can act either as nutrients or directly in the hypothalamus, reverting dietinduced inflammation and reducing body adiposity. These data show that, in addition to pharmacological and geneti

    The Insulin-Mediated Modulation of Visually Evoked Magnetic Fields Is Reduced in Obese Subjects

    Get PDF
    BACKGROUND: Insulin is an anorexigenic hormone that contributes to the termination of food intake in the postprandial state. An alteration in insulin action in the brain, named "cerebral insulin resistance", is responsible for overeating and the development of obesity. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the direct effect of insulin on food-related neuronal activity we tested 10 lean and 10 obese subjects. We conducted a magnetencephalography study during a visual working memory task in both the basal state and after applying insulin or placebo spray intranasally to bypass the blood brain barrier. Food and non-food pictures were presented and subjects had to determine whether or not two consecutive pictures belonged to the same category. Intranasal insulin displayed no effect on blood glucose, insulin or C-peptide concentrations in the periphery; however, it led to an increase in the components of evoked fields related to identification and categorization of pictures (at around 170 ms post stimuli in the visual ventral stream) in lean subjects when food pictures were presented. In contrast, insulin did not modulate food-related brain activity in obese subjects. CONCLUSIONS/SIGNIFICANCE: We demonstrated that intranasal insulin increases the cerebral processing of food pictures in lean whereas this was absent in obese subjects. This study further substantiates the presence of a "cerebral insulin resistance" in obese subjects and might be relevant in the pathogenesis of obesity

    Hypothalamic 2-Arachidonoylglycerol Regulates Multistage Process of High-Fat Diet Preferences

    Get PDF
    In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system.The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting.Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption.High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences

    Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans

    Get PDF
    Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [11C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4–100 mg) or NTX (range, 2–50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50=7.10 ng ml−1) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration–RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption

    Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids.

    Get PDF
    The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues
    corecore