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Abstract

The prevalence of obesity has drastically increased over the last few decades. Exploration into

how hunger and satiety signals influence the reward system can help us to understand non-

homeostatic mechanisms of feeding. Evidence suggests that insulin may act in the ventral

tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However,

the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate

that insulin, a circulating catabolic peptide that inhibits feeding, can induce a long-term depression

(LTD) of excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-

mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high fat

meal, which elevates endogenous insulin levels, insulin-induced LTD is occluded. Finally, insulin

in the VTA reduces food anticipatory behavior and conditioned place preference for food. Taken

together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission

and reduces salience of food-related cues.
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Obesity is now recognized as a serious public health issue because of its increasing

prevalence and serious comorbidities, including type 2 diabetes, cancer and cardiovascular

diseases 1. Obesity results from increased energy consumption that exceeds energy
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expenditure. While much research has focused on central nervous system regulation of body

weight homeostasis and metabolism, this system does not work very well in an environment

where little effort is required to procure palatable food with high caloric density. Dopamine

neurons of the ventral tegmental area (VTA) have been implicated in the incentive,

reinforcing, and motivational aspects of food intake 2. Synapses onto VTA dopamine

neurons can undergo both long-term potentiation (LTP) and long-term depression (LTD) to

regulate their synaptic strength and consequent dopaminergic output 3, 4. Enhanced synaptic

efficacy of these neurons has been linked not only to exposure to drugs of abuse, but to

feeding-related peptides, such as hypocretin/orexin 5, 6 and ghrelin 7. Potentiation of

synaptic strength of dopamine neurons by feeding-promoting peptides may underlie

motivation to obtain food 5, 8, 9.

Normal feeding is regulated by the circulating catabolic peptides, insulin and leptin, that

transmit satiety signals to the brain. Insulin is released into the circulation after ingestion of

a meal and, along with leptin, may signal the cessation of eating by action in the

ventromedial hypothalamus in response to changes in energy homeostasis 10. Insulin gains

access to the brain by active transport across the blood-brain barrier 11 and its effects are

mediated by signaling through insulin receptors expressed throughout the brain 12. Insulin

binds to a single-pass tyrosine kinase membrane receptor, resulting in dimerization and

activation of its intrinsic kinase domain. Insulin-response substrates are phosphorylated, and

then mediate intracellular signaling cascades and transcription. Obesity often results in

resistance to insulin signaling and consequently circulating levels of both glucose and

insulin remain high 1. Obesity-associated hyperinsulinemia leading to insulin resistance has

also been reported in the brain 1, 13.

While leptin can inhibit firing of dopamine neurons and reduce dopaminergic output 14, 15,

little is known about how insulin interacts with dopamine neurons within the VTA. Several

lines of evidence suggest that insulin may alter activity of VTA dopamine neurons. Insulin

receptors are expressed on dopamine neurons 16. When administered

intracerebroventricularly, insulin decreases motivation to obtain sucrose 17 and inhibits

conditioned place preference (CPP) associated with high fat food 18. Insulin administered

directly into the VTA inhibits opioid-induced feeding 19 and palatable food ingestion 20,21.

Furthermore, insulin in the VTA increases threshold for intracranial self-stimulation22.

Therefore, although insulin appears to modulate appetitive behavior, it is unknown how

insulin modulates excitatory synaptic transmission of dopamine neurons. Modulation of

excitatory inputs onto VTA dopamine neurons is particularly important as these inputs

tightly regulate dopamine neuronal firing and ultimately dopamine release23. To elucidate

the potential contributions of insulin signaling to neuroplasticity in the VTA, we explored

the effects of insulin on excitatory synaptic transmission onto VTA dopamine neurons.

Results

Insulin depresses AMPAR-mediated synaptic transmission of VTA dopamine neurons

The VTA receives glutamatergic inputs from a variety of regions including the lateral

hypothalamus, prefrontal cortex, lateral dorsal tegmentum and peduncle pontine nucleus24.

Excitatory postsynaptic currents (EPSCs) from unspecified glutamatergic inputs were
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evoked using a bipolar stimulating electrode placed 100 – 300 μm rostral to the recording

electrode on VTA dopamine neurons recorded from mouse horizontal midbrain slices. Bath

application of insulin (500 nM, 10 min; 25, 26) induced a long-term depression (LTD) of

evoked EPSCs amplitude (Figure 1A). To determine if insulin-induced LTD required insulin

receptor signaling, we interfered with insulin receptor activation in two ways. Both

intracellular application of a tyrosine kinase inhibitor, HNMPA (300 μM; 27), or bath

application of a novel insulin receptor antagonist, S961 (1 μM; 28), blocked insulin-induced

LTD (Figure 1A). Because insulin is also known to target insulin-like growth factor

receptors (IGFR) in the brain 29, we blocked IGFR activation using the selective inhibitor

picropodophyllotoxin (PPP; 0.5 μM). In the presence of PPP, insulin-induced LTD was not

significantly different from the control condition (p > 0.05, T-test comparing maximal

effects at 40 min of PPP-treated vs. control), therefore demonstrating the specificity of

insulin action via insulin receptors. Insulin-induced LTD was concentration-dependent with

an IC50 of 17 ± 1 nM (Figure 1B). Finally, to determine if insulin-induced LTD was due to

ineffective insulin wash out from midbrain slices, we bath applied cell permeable

HNMPA[AM]3 (1 μM; Figure 1C) or S961 (300 μM; Figure 1D) 10 min after washout of

insulin. Insulin-induced LTD was not reversed by either the insulin receptor antagonist or

insulin receptor tyrosine kinase inhibitor.

To determine if insulin could alter NMDAR-mediated excitatory synaptic transmission, we

evoked NMDAR EPSCs while voltage-clamping dopamine neurons at +40 mV. Insulin (500

nM, 10 min) caused a long lasting depression of NMDAR EPSCs to a maximum of 36 ± 5

% (Figure 1E). The time course or maximal effect was not significantly different than that

for insulin-induced LTD of AMPAR EPSCs (p > 0.05; T-test comparing areas under the

curve (AUC)). Taken together, insulin suppressed both AMPAR and NMDAR EPSCs of

VTA dopamine neurons.

While insulin depressed excitatory synaptic transmission of VTA dopamine neurons, we

investigated if insulin could also affect inhibitory synaptic transmission onto these neurons.

Insulin did not modify GABAA mediated inhibitory postsynaptic currents (IPSCs) onto

dopamine neurons (Figure 1F; p > 0.05, T-test comparing maximal effect at 40 min to

control (Figure 1A)), suggesting that insulin-induced LTD occured selectively at excitatory

synapses.

Insulin-induced LTD requires the activation of Akt and mTOR

Insulin receptor activation triggers a variety of signal transduction cascades upon

dimerization, autophosphorylation, and recruitment of insulin receptor substrates. One

pathway involves activation of phosphatidylinositol 3 kinase (PI3K) and subsequent

stimulation of Akt kinase. This pathway also triggers activation of mammalian target of

rapamycin (mTOR) 30, a mediator that has been implicated in depression of AMPAR-

mediated synaptic transmission of VTA dopamine neurons 31. To determine if mTOR

signaling was required for insulin-induced LTD in the VTA, we prevented activation of

mTOR by bath application of rapamycin (50 nM). Rapamycin significantly blocked insulin-

induced LTD (Figure 2A, B) compared to controls (Figure 1A, p < 0.05, T-test of maximal

effects at 40 min). Insulin-induced LTD was also abolished in the presence of the
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intracellularly applied Akt antagonist, 10-DEBC (20 μM; Figure 2A, B , p > 0.05, paired T-

test of maximal effect at 40 min to baseline at 5 min) and was significantly different from

insulin-induced LTD in controls (Figure 1A, p < 0.05, T-test of maximal effects at 40 min).

In contrast, insulin-induced LTD was unaffected in the presence of the protein kinase A

inhibitor, PKI (20 μM; Figure 2A, B; p > 0.05, T-test of maximal effects at 40 min). Figure

2B summarizes the maximal effect 20 min after insulin application. A one-way ANOVA

with a Dunnet’s post hoc test comparing treatments to the control demonstrated that the

effect of insulin in 10-DEBC or rapamycin was significantly different than insulin alone (p <

0.01, p < 0.05, respectively). These data suggest that the Akt/mTOR pathway was required

for insulin-induced LTD in VTA dopaminergic neurons.

Insulin-induced LTD of AMPARs is not mediated by AMPAR trafficking

Insulin-induced LTD in hippocampal and cerebellar neurons involves internalization of

AMPARs 25, 26. Therefore, we tested whether insulin-induced LTD in the VTA occurred via

activity-dependent internalization. This process requires AMPAR sequestration through a

clathrin-dependent mechanism, association with dynamin and amphiphysin, and consequent

dephosphorylation of components of the endocytotic machinery32. We applied GluA23Y

(100 μg/ml; 33; Figure 3A) or Δpep849-853 (500 μM; 34; Figure 3B) intracellularly to block

the AP2 binding site on the AMPA GluA2 receptor subunit. Maximal inhibition was not

significantly different from controls (GluA23Y: 31 ± 8%, p > 0.05; Δpep849-853: 34 ± 4%,

p > 0.05; T-test comparing effect at 40 min of GluA23Y or Δpep849-853 treated neurons to

controls from Figure 1A). Furthermore, intracellular application of D15, a peptide which

disrupts the interaction between dynamin and amphiphysin 35, did not significantly alter the

magnitude of insulin-induced LTD in VTA dopamine neurons (37 ± 9% decrease 30 min

after insulin application; Figure 3C, D; p > 0.05; T-test comparing maximal effect at 40 min

in D15-treated cells with that of controls). LTD of synapses of dopamine neurons in the

VTA can also be induced by low-frequency stimulation of glutamatergic afferents (LFS-

LTD; Figure 3E, F; 3). Intracellular application of D15, but not the scrambled peptide S15,

abolished LFS-LTD compared to controls in VTA dopamine neurons (Figure 3E, F; p <

0.05; ANOVA of maximal effect at 40 min of LFS-LTD in D15- or S15-treated cells to

LFS-LTD in untreated controls). Taken together, these results suggest that while D15

blocked conventional LFS-LTD in the VTA, insulin-induced LTD occured by some other

mechanism.

Insulin decreases presynaptic glutamate release onto VTA dopamine neurons via
retrograde endocannabinoid signaling

LTD in the VTA can be mediated postsynaptically as described above, or by a presynaptic

inhibition of glutamate release 36. Therefore, to investigate whether insulin altered the

number and/or function of postsynaptic AMPARs or caused a presynaptic inhibition of

glutamate release, we measured AMPAR-mediated miniature EPSCs (mEPSCs), a standard

method for determining the locus of synaptic change37. 20 min after bath application of

insulin (500 nM, 10 min), mEPSCs frequency was significantly reduced compared to

untreated slices (ACSF, 10 min) (Figure 4A, Bi, Ci; p < 0.01; T-test comparing frequency of

mEPSCs from ACSF- vs. insulin-treated cells). Insulin did not alter mEPSCs amplitude

compared to untreated slices (Figure 4A, Bii, Cii; p > 0.05; T-test comparing amplitude of
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mEPSCs from ACSF- vs. insulin-treated cells). A reduction of mEPSCs frequency

concomitant with unchanged amplitude likely reflects a decrease in the probability of

presynaptic neurotransmitter release 37. To further verify if insulin-mediated depression of

AMPARs was mediated pre- or post-synaptically, we examined the effects of insulin on the

probability of transmitter release, comparing the response to paired pulses, a measure that

changes in a highly predictable fashion with release probability. We recorded AMPAR

EPSCs at −70 mV using a paired-pulse stimulation protocol with a 50-ms interval and

observed significant paired pulse facilitation after insulin bath application (Figure 4D; p <

0.05, repeated measures ANOVA). Thus, insulin-mediated depression of AMPAR-mediated

synaptic transmission resulted from a reduced probability of glutamate release.

Interestingly, antagonists of the insulin receptor signaling pathway administered

postsynaptically was sufficient to block insulin-mediated LTD, yet insulin caused a

presynaptic depression of glutamate release. Therefore, we hypothesized that postsynaptic

insulin-receptor activation may initiate a retrograde signaling mechanism. Endocannabinoids

synthesized postsynaptically act at presynaptic cannabinoid 1 receptors (CB1Rs) in a

retrograde manner to mediate presynaptic inhibition of glutamate release in several brain

regions including the VTA 38, 39. Therefore, we tested if the insulin-induced inhibition of

glutamate release probability was blocked in the presence of a CB1R antagonist, AM251 (2

μM, bath applied 5 min prior to insulin and for the duration of the experiment). Insulin did

not significantly alter mEPSCs frequency (Figure 4E, Fi, Gi; p > 0.05; T-test comparing

frequency of mEPSCs from ACSF vs. insulin treated cells) or amplitude (Figure 4E, Fii, Gii;

p > 0.05; T-test comparing amplitude of mEPSCs from ACSF- vs. insulin-treated cells) in

the presence of AM251.

To determine if CB1R activation was required for insulin-induced LTD, AM251 (2 μM) was

bath applied 5 min prior to insulin (500 nM, 10 min) and for the duration of the experiment.

Insulin-induced LTD was significantly reduced compared to controls (AM251 with insulin:

10 ± 7 % vs. insulin alone: 40 ± 3 % decrease 30 min after insulin application; Figure 5A; p

< 0.01; T-test). Bath application of a CB1R agonist, WIN 55,232-2 (WIN, 1 μM, 5 min),

induced LTD of AMPAR-mediated synaptic transmission with a similar magnitude as

insulin-mediated LTD (44 ± 4% decrease 35 min after WIN application; Supplemental

Figure 1; p > 0.05; T-test). To determine if prior activation of CB1Rs could occlude insulin-

induced LTD, we applied WIN 20 min prior to insulin and for the duration of the

experiment. In the presence of WIN, insulin did not induce a significant depression of

AMPAR-mediated synaptic transmission (Figure 5B; p > 0.05; paired T-test of baseline (5

min) vs. 30 min after insulin application), suggesting that insulin-induced LTD and CB1R-

mediated LTD shared the same mechanism. In the reverse experiment, we tested if WIN

could further inhibit AMPAR EPSCs after insulin-induced LTD. WIN (1 μM, 5 min) applied

25 min after insulin application did not cause a significant reduction in evoked AMPAR

EPSCs (Figure 5C; p > 0.05; paired T-test comparing effect at 40 min vs. 70 min).

We also examined if postsynaptic synthesis of endocannabinoids was required for insulin-

induced LTD by inhibiting the synthesis of 2-arachidonylglycerol (2-AG), the most

abundant endocannabinoid in the midbrain 40. Intracellular application of the diacylglycerol

lipase (DAGL) inhibitor, orlistat (2 μM), blocked insulin-induced LTD (Figure 5D; p > 0.05;
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paired T-test of baseline (5 min) compared to 30 min after insulin application). When

compared to insulin treatment alone, preincubation of AM251, WIN or intracellular

application of orlistat significantly inhibited insulin-induced LTD of AMPAR EPSCs (p <

0.05; ANOVA with Dunnet’s post hoc test comparing treatments to insulin control). Taken

together, these results suggest that insulin receptor activation stimulated 2-AG production

resulting in presynaptic CB1R-mediated depression of glutamate release.

In other preparations, endocannabinoid-mediated LTD has been implicated in the induction

phase of LTD, as depression of AMPAR EPSCs was resistant to CB1R antagonists several

minutes after induction39. Therefore, we tested if insulin-induced LTD required CB1R

activation or endocannabinoid synthesis solely during the LTD induction phase or if LTD

was maintained by another mechanism. Application of AM251 (Figure 5E; p > 0.05) or

orlistat (Figure 5E; p > 0.05) did not significantly alter AMPAR EPSC amplitude after

insulin-induced LTD (T-tests comparing effect at 30 min vs. effect at 55 min). Taken

together, our data suggest that endocannabinoids were required for induction of insulin

LTD, but were no longer required to maintain the LTD.

To determine if intracellular calcium was required for insulin-induced LTD, the Ca2+

chelator BAPTA (10 mM) was applied intracellularly for the duration of the experiment.

Insulin suppressed AMPAR EPSCs to a similar maximum as without BAPTA, suggesting

that intracellular Ca2+ was not required for this effect (Figure 5F). Furthermore, insulin-

induced LTD was still blocked by the CB1R antagonist, AM251, in the presence of

intracellular BAPTA (Figure 5F), suggesting that intracellular Ca2+ was not required for

insulin-induced endocannabinoid LTD.

Insulin-induced LTD in VTA is occluded after sweetened high-fat exposure

To determine if a caloric meal, known to elevate insulin levels, could alter insulin-induced

LTD in the VTA, we exposed C57BL/6J mice to unlimited sweetened high-fat pellets (SHF

group) or continued access to regular chow (RF group) for one hour before brain slice

preparation. All mice were exposed to 1 g of SHF pellets 48 hours prior to the experiment to

habituate them to the novel food. Plasma insulin levels were significantly greater in SHF

group (2.0 ± 0.4 ng/ml, n =11) compared to RF group (0.8 ± 0.2 ng/ml, n = 7) or 1 hour after

SHF exposure (0.7 ± 0.2, n = 9) (p < 0.05; one way ANOVA). In contrast to dopamine

neurons from RF fed animals (n = 11), insulin did not induce LTD in VTA dopamine

neurons from SHF fed mice (Figure 6A, n = 8, p > 0.05; paired T-test comparing baseline at

5 min with 30 min after insulin application). The maximal effects of insulin on AMPAR

EPSCs between RF- or SHF- fed mice were significantly different (p < 0.05, T-test). The

inability of insulin to induce LTD could be explained by the possibility that SHF fed mice

had elevated insulin levels, thus occluding the effects of exogenously applied insulin. To test

this hypothesis, we measured mEPSCs from VTA dopamine neurons of mice fed RF or

SHF. Compared to mice fed RF (n = 8), mice fed SHF had a significantly reduced mEPSC

frequency (Figure 6Bi,ii, iii, n = 10, p < 0.05, T-test), but no change in mEPSC amplitude

compared to RF fed mice (Figure 6Bi,ii,iv, p > 0.05, T-test). We next tested if a SHF meal

increased endocannabinoid signaling compared to controls. Bath application of the CB1R

antagonist, AM251 (10 μM), led to a significant increase of AMPAR EPSC amplitude in
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VTA slices obtained from SHF fed animals (n = 6) compared to mice fed RF (n = 9) (Figure

6C; p < 0.05; T-test comparing maximal effect at 30 min between SHF and RF groups). To

determine if continued endocannabinoid synthesis was required for the CB1R-mediated

increase in EPSCs after SHF, orlistat was applied via the patch pipet before, during and after

AM251 application (2 μM, Figure 6C). Intracellular application of orlistat did not

significantly alter the maximal amplitude of AMPAR EPSCs after AM251 application to

cells from SHF fed mice (p > 0.05, n = 9; T-test comparing AMPAR EPSCs 20 min after

AM251 application with or without orlistat). To determine if 2-AG levels are produced by a

source other than the postsynaptic neuron following SHF, we tested if bath application of

orlistat altered AMPAR EPSCs after AM251 application to cells from mice fed SHF. In the

presence of orlistat, AM251 did not alter AMPAR EPSCs in SHF fed mice (p > 0.05, n = 8,

T-test comparing AMPAR EPSCS before (at 5 min) and after (at 30 min) AM251).

Next, we assessed if insulin-induced LTD was present in VTA dopamine neurons from mice

fed SHF or RF (1 h) and then sacrificed 60 min after the food exposure. Insulin-induced

LTD was partially restored in animals fed SHF (22 ± 7 % inhibition 30 min after insulin

application; Figure 6D, E, p < 0.05, paired T-test comparing baseline at 5 min with

maximum at 15 min after insulin application). Insulin-induced LTD was significantly

different between dopamine neurons from RF fed animals, SHF fed animals and those from

1 hour after SHF fed animals (Figure 6D, E, p < 0.05, ANOVA with Bonferroni post-hoc

test). Taken together, these results suggest that elevation of insulin levels by consumption of

a caloric meal temporarily disrupts exogenously applied insulin-induced LTD in VTA slices.

To determine if a SHF meal could modulate a dopamine-mediated behavior, the effect of 1

hour access to SHF or RF on cocaine-induced locomotor activity was examined. As above,

mice were given 1 hour access to SHF or RF. Mice were then given a systemic injection of

cocaine (15 mg/kg, i.p.) or saline and then placed immediately in an open field chamber to

measure locomotor activity (15 min). Mice given 1 hour access to SHF, exhibited

significantly less locomotor activity than did mice fed with RF (Figure 6F, RF: 89 ± 8 cm

vs. SHF: 73 ± 8 cm, p < 0.05, one way ANOVA). There were no significant differences in

basal locomotor activity in mice receiving RF (37 ± 2 cm, n = 9) or SHF (34 ± 3 cm, n = 9, p

> 0.05, one way ANOVA). These data suggest that a SHF meal can reduce cocaine-induced

locomotor activity.

Insulin in the VTA inhibits food anticipatory activity, conditioned place preference (CPP)
for food, but not effort to obtain food reward

To explore the behavioral relevance of insulin in the VTA, we first assessed if insulin could

modulate food anticipatory activity. Previous work has demonstrated that mice will increase

their locomotor activity prior to receiving meals41, an effect that is accompanied by a

significant increase in dopamine concentration in target regions of the VTA42. Mice were

entrained to consume their daily caloric intake within 4 hours per day between ZT 6–10.

Once entrainment was established, on the test day mice received VTA injections of insulin

(5 mU; 20) or vehicle and then placed in the entrainment cage in which food was placed

behind a plexiglass barrier containing 4 small diameter holes at the base of the barrier. In

this paradigm, mice had visual and olfactory cues of the food (chow), but were unable to
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access the food for 15 minutes. During this time, food anticipatory activities including cage

crossovers as a proxy for locomotor activity, rearing and digging were recorded. Non-

specific behavioral activities such as grooming were also recorded. Intra-VTA insulin

significantly reduced crossovers (Figure 7Ai, p < 0.05, paired T-test), rearing (Figure 7Aii, p

< 0.05, paired T-test) and digging (p < 0.05, paired T-test, Figure 7Aiii), but did not reduce

grooming (Figure 7Aiv, p > 0.05, paired T-test). Importantly, intra-VTA insulin (5 mU) did

not modify basal locomotor activity in an open field (15 min) compared to intra-VTA

vehicle (vehicle: 29 ± 4 cm vs. insulin: 31 ± 3, n = 9, p > 0.05, paired-T test). These data

indicate that insulin in the VTA suppressed behavioral activities associated with food

anticipatory behavior.

Insulin-induced reduction in activity during anticipation of food may reflect changes in

simple appetitive behaviors displayed routinely prior to consumption of a meal; an effect

that is mediated by the salience of food-related cues. Alternatively, insulin may reduce the

effort exerted to obtain food. We first tested the latter idea directly by training mice to

perform an instrumental response for palatable food under progressive ratio (PR) schedule

whereby the response requirement to earn sucrose escalates after the delivery of each

reinforcer. The maximal number of responses emitted to successfully complete the final

ratio is defined as the breakpoint and is hypothesized to reflect the maximum effort an

animal will exert to obtain a fixed amount of food43. Intra-VTA insulin (0.065 mU (2

μM;44)) did not alter the breakpoint for sucrose (2.5%, 10 μl) compared to intra-VTA

vehicle (Figure 7Bi, p > 0.05, paired T-test). To determine if intra-VTA insulin modulates

the effort required to obtain a more salient reinforcer, mice were tested with sweetened

condensed milk (SCM). While the breakpoint was significantly greater for SCM than

sucrose (p < 0.001, T-test), the breakpoint for SCM was not significantly different between

intra-VTA insulin (3.25 mU (100 μM)) and controls (p > 0.05, paired T-test). Furthermore,

there were no significant differences in cumulative probability for sucrose (Figure 7Biii) or

SCM (Figure 7Biv) between intra-VTA insulin (p > 0.05, Kolmogorov-Smirnov test). Taken

together, these data indicate that insulin in the VTA does not alter the effort required to

obtain a palatable reinforcer.

Next, we tested if insulin in the VTA can alter conditioned place preference (CPP) for food.

This test depends on the animal learning to associate contextual cues with a food reward45.

These experiments were performed in ad libitum fed animals during their light phase to be

consistent with our electrophysiological experiments. Unfortunately, we were unable to

obtain a reliable CPP in non-food restricted mice; therefore the experiment was repeated

using rats as subjects. Consistent with our electrophysiological studies, insulin induced a

similar LTD in rats to a maximum of 37 ± 3 % 30 min after insulin application (n = 7;

Supplemental Figure 2). Rats were placed initially in a central compartment of the CPP

chamber and had free access to separate compartments defined by specific visual and floor

texture contextual cues paired with food (Froot loops) or no food (unpaired) on alternate

days for 8 training days. There were no significant differences in place preference amongst

groups during the pre-test (Figure 7C, p > 0.05, ANOVA with a Bonferroni post test). On

the test day (in the absence of Froot loops), insulin (0.005 mU (63 nM)22 or 0.065 mU (2

μM)44) or vehicle was microinjected in the VTA 5 min prior to placing the animals in the
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CPP apparatus. Time spent in each chamber was recorded. Intra-VTA insulin caused a

concentration-dependent decrease in preference score (Figure 7D, p < 0.05, ANOVA with a

Bonferroni post test). Disruption in CPP supports the proposal that insulin in the VTA

reduces the salience of contextual cues associated with food reward.

Discussion

The data presented here establish a novel mechanism for insulin function in the mesolimbic

pathway. Insulin produced an LTD of AMPAR-mediated synaptic transmission onto VTA

dopamine neurons. Importantly, insulin-induced LTD required postsynaptic activation of

insulin receptor signaling, synthesis of endocannabinoids as well as presynaptic CB1R-

mediated inhibition of glutamate release. Furthermore, insulin-induced LTD was likely

occluded in mice pre-fed with SHF. Insulin in the VTA inhibited food anticipatory behavior

and CPP for food, suggesting that insulin may attenuate the salience of food-related contexts

or cues. These data not only point to a novel type of endocannabinoid-mediated LTD, they

demonstrate that insulin signaling in the VTA depresses synaptic output and plays a role in

modulating ingestive behavior.

Insulin-induced LTD of VTA dopamine neurons

We demonstrated that insulin caused a long-lasting depression of AMPAR-mediated

excitatory synaptic transmission onto VTA dopaminergic neurons with concentrations as

low as 10 nM. Insulin-induced LTD has been reported in other brain regions, including the

hippocampus 25 and cerebellum 26. However, in these brain regions, insulin-induced LTD

occurred through a clathrin-dependent endocytosis of GluA2-containing AMPARs. In

contrast, we demonstrated that insulin-induced LTD was mediated by endocannabinoid

retrograde signaling. First, insulin-induced LTD was not blocked by inhibitors to the

endocytotic process of AMPARs. Secondly, insulin-induced LTD as well as insulin-induced

reduction in mEPSCs frequency was abolished with AM251, a CB1R antagonist. Thirdly,

we demonstrated that insulin- or CB1R-mediated depression of AMPAR currents occurred

through the same mechanism. Fourth, intracellular application of orlistat, an inhibitor of 2-

AG synthesis, blocked insulin-induced LTD. Taken together, we demonstrate a novel

mechanism of insulin-induced LTD requiring retrograde endocannabinoid signaling.

Endocannabinoid-mediated LTD has been reported to occur at both excitatory 38 and

inhibitory 46 synapses onto VTA neurons. Interestingly, insulin-induced endocannabinoid-

mediated LTD was selective for glutamatergic synapses onto dopamine neurons as insulin

receptor activation did not modify GABA IPSCs. While it is unclear how this synapse-

selective endocannabinoid-LTD occurred, one possibility is that GABAergic and

glutamatergic synapses are segregated within regions of the VTA, such that

endocannabinoids produced near glutamatergic synapses may not reach GABAergic

synapses. Interestingly, distal dendrites of dopamine neurons reaching into the substantia

nigra reticulata received significantly stronger GABAergic input than dendrites nearer to the

substantia nigra pars compacta, thereby establishing precedence for synaptic segregation

influencing neuronal activity within the midbrain 47. Alternatively, insulin receptors could

be preferentially located near glutamatergic synapses. Cell selective endocannabinoid-LTD
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has been demonstrated at excitatory synapses onto medium spiny neurons of the nucleus

accumbens48. Taken together, insulin may selectively dampen glutamatergic inputs to the

VTA.

Endocannabinoid-mediated LTD is a widespread phenomenon in the brain39. Its induction

typically requires a transient increase in activity at glutamatergic afferents and concomitant

release of endocannabinoids from the postsynaptic neuron. Endocannabinoid-mediated LTD

can also result from activation of G-protein coupled receptors which signal through Gαq/11,

engaging phospholipase C (PLC) and DAGL, forming the endocannabinoid, 2-AG.

Activation of Gαi/o -coupled receptors leading to increases in anandamide has also been

demonstrated 39. Here, we demonstrate a form of endocannabinoid-LTD that is initiated by

activation of a receptor-tyrosine kinase-type receptor resulting in synthesis and release of 2-

AG.

Although CB1 receptor activation is necessary for the induction of LTD, it is not necessary

for its maintenance39, 49, 50. Consistent with these studies, we demonstrate that after

exogenously applied insulin, LTD was not reversed with application of AM251 or orlistat.

While application of WIN caused a long-lasting depression of AMPAR EPSCs, this was not

likely due to persistent CB1R signaling, but the inability to wash out the highly lipophillic

drug during the recording period51. These results implicate other mechanisms to maintain

the LTD, including protein translation at excitatory synapses, as has been demonstrated in

the striatum51 or a presynaptic alteration stabilizing the reduced release probability.

Synaptic depression induced by SHF consumption

We demonstrated that synaptic depression onto dopamine neurons also occurs after a SHF

meal. Although we are unable to unequivocally state that SHF induced synaptic depression

was directly due to insulin signaling, this effect was consistent with insulin-induced LTD

onto dopamine neurons. Firstly, when mice had 1 hour access to SHF plasma insulin levels

were elevated compared to mice given RF. Secondly, compared to RF fed mice, SHF-fed

mice demonstrated an inability to produce insulin-induced LTD and a decreased probability

of glutamate release, suggesting that a SHF meal was sufficient to suppress excitatory

synaptic transmission onto VTA dopamine neurons and potentially occlude insulin-induced

LTD. Thirdly, only dopamine neurons from mice fed SHF were sensitive to a CB1R

antagonist, suggesting an elevated endocannabinoid tone. Indeed, increased AEA and 2-AG

levels were observed in animals fed a long-term high fat diet52. Bath application of orlistat

inhibited the AM251-induced potentiation of AMPAR EPSCs after SHF. Interestingly,

postsynaptic application of orlistat did not block AM251-induced potentiation of AMPAR

EPSCs; however, there are several interpretations of this data. Firstly, intracellular

application of orlistat would only block 2-AG production from the recorded neuron without

negating potential increases in 2-AG due to insulin signaling on other dopamine neurons, or

sources other than dopamine neurons contributing to the elevated endocannabinoid tone.

Secondly, consistent with our in vitro results where exogenous application of insulin did not

require prolonged endocannabinoid release, 2-AG produced during the induction phase

(during SHF consumption) was sufficient to maintain CB1R activation. Taken together, SHF
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meal induced a suppression of excitatory synaptic transmission onto dopaminergic neurons,

likely by increasing endocannabinoid tone.

Interestingly, SHF-induced depression of excitatory synaptic transmission in the VTA was

partially reversed in slices cut 1 hour after SHF food exposure. Thus, unlike long-lasting

synaptic adaptations associated with drugs of abuse53, the depression of excitatory synaptic

transmission onto dopamine neurons associated with a caloric meal was relatively transient.

Notably, one hour later, plasma insulin levels were significantly less than immediately after

SHF, suggesting that the inability of exogenously applied insulin to induce LTD after SHF

correlates with plasma insulin levels. Because of insulin’s rapid clearance from the

circulation by the liver, insulin has a very short half life in vivo54. Consequently,

concentrations acting in the VTA may be different than that of exogenously applied insulin

resulting in potential differences in the time course of effect. Additionally, in vivo

mechanisms may be required to reverse SHF-induced synaptic depression. Indeed, arousal

and feeding-related peptides such as orexin/hypocretin or ghrelin have been known to

enhance excitatory synaptic efficacy onto VTA dopamine neurons55–57. Taken together, a

depression of excitatory synaptic transmission onto dopamine neurons may transiently

prevent depolarizations required for burst firing and delivery of dopamine to target regions

of the VTA58,59, thereby potentially attenuating the salience of food-related cues and

consequent food consumption.

Interestingly, cocaine-induced locomotor activity was reduced in mice receiving a SHF meal

compared to RF-fed controls. This effect is consistent with an increase in plasma insulin

levels, an occlusion of insulin-induced LTD and a reduction of excitatory synaptic

transmission onto VTA dopamine neurons after a SHF meal. Notably, this effect only

occurred in cocaine-treated mice. Consistent with this, insulin in the VTA did not alter basal

locomotor activity. Interestingly, insulin in the VTA increases transporter number or

function resulting in a decrease in somatodendritic dopamine60. Therefore, in addition to a

SHF meal reducing excitatory synaptic transmission, it may also reduce dopamine-enhanced

locomotor activity.

Insulin in the VTA reduced salience of cues for food

Our electrophysiology results indicate that insulin suppressed excitatory synaptic

transmission onto VTA dopamine neurons, likely reducing their burst activity which in turn

would attenuate dopamine release in target regions of the mesocorticolimbic dopamine

system. Enhanced synaptic efficacy onto VTA dopamine neurons and their consequent burst

firing has been associated with learned associations of cues with rewards59. Therefore, we

hypothesized that insulin in the VTA decreases salience of reward predicting cues.

Consistent with this, we found decreased preference for environmental contexts associated

with food after intra-VTA insulin treatment, in agreement with reports demonstrating i.c.v.

insulin reduces CPP for high-fat food18. Surprisingly, we did not observe a significant effect

on effort exerted to obtain sucrose or SCM with 0.065 or 3.25 mU insulin intra-VTA,

respectively. While intra-VTA insulin (5 mU) did not modify lever pressing for sucrose

under a fixed ratio schedule20, others have reported that icv insulin (5 mU), reduced lever

pressing for 5% sucrose under a progressive ratio schedule17. Our observation that intra-
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VTA insulin suppressed food anticipatory behavior was likely an effect of insulin on

processes involved in learned associations between visual and/or olfactory stimuli and food

rather than those mediating effort required to obtain food per se. Importantly, unlike the PR

test, consumption of food was not required for intra-VTA insulin-induced reductions of food

anticipation or expression of food place preference. Consumption of RF was not reduced

with intra-VTA insulin60. Furthermore, our study demonstrated that plasma insulin levels

after RF feeding were not elevated, nor was exogenous insulin-induced LTD occluded after

RF. However, a significant reduction in sated consumption of SHF was observed after intra-

VTA insulin60. Therefore, intra-VTA insulin likely induced LTD and thus reduced salience

for SHF resulting in reduced consumption. Taken together, insulin action in the VTA may

reduce the salience of food-associated contexts or cues.

Here, we propose a novel mechanism by which insulin reduces excitatory synaptic efficacy

onto VTA dopamine neurons. Insulin-induced LTD requires postsynaptic insulin receptor

activation, Akt and mTOR signaling, and retrograde endocannabinoid suppression of

glutamate release. Furthermore, a SHF meal, which elevates plasma insulin, transiently

weakens excitatory synaptic transmission onto dopamine neurons. Finally, insulin in the

VTA likely reduces the salience of cues or contexts associated with food. Taken together,

these findings bring new insights to how insulin can modulate reward circuitry and a novel

type of endocannabinoid-mediated LTD.

Methods

Animals

All protocols were in accordance with the ethical guidelines established by the Canadian

Council for Animal care and were approved by the University of British Columbia Animal

Care Committee. C57BL/6J mice were obtained from the University of British Columbia

breeding facility. Mice expressing green fluorescent protein in neurons with tyrosine

hydroxylase (TH-GFP mice) were obtained from Dr. Okano at the Keio University School

of Medicine, Tokyo, Japan 61.

Electrophysiology

All electrophysiological recordings were performed in male mice ranging from P19 to P30.

Briefly, animals were anesthetized with halothane, decapitated and brains were extracted.

Horizontal sections of the VTA (250 μM) were prepared with a vibratome (Leica, Nussloch,

Germany). Slices were placed in a holding chamber and allowed to recover for at least 1h

before being placed in the recording chamber and superfused with bicarbonate-buffered

solution (ACSF) saturated with 95% O2/5% CO2 and containing (in mM): 126 NaCl, 1.6

KCl, 1.1 NaH2PO4, 1.4 MgCl2, 2.4 CaCl2, 26 NaHCO3, and 11 glucose (at 32°C–34°C).

Cells were visualized using infrared differential interference contrast video microscopy.

Whole-cell voltage-clamp recordings were made using a MultiClamp 700B amplifier (Axon

Instruments, Union City, CA). Electrodes (3–4.5 MΩ) contained (in mM): 117 cesium

methansulfonate, 20 HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA-Cl, 2.5 MgATP, and 0.25 NaGTP

(pH 7.2–7.3, 270–285 mOsm). Series resistance (10–25 MΩ) and input resistance were

monitored online with a 10 mV depolarizing step (400 ms) given before every afferent
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stimulus. To identify VTA dopaminergic neurons, we recorded from TH-GFP mice which

expressed GFP fluorescence in dopaminergic neurons. In C57BL/6J mice, dopamine

neurons were identified by the presence of a hyperpolarizing cation current (Ih) 63, 64. A

bipolar stimulating electrode was placed 100–300 μm rostral to the recording electrode and

was used to stimulate excitatory afferents at 0.1 Hz. To induce low-frequency stimulation

LTD (LFS-LTD), neurons were held at −40 mV for 6 min while excitatory afferents were

stimulated at 1 Hz. Neurons were voltage clamped at −60 mV to record AMPAR-mediated

excitatory post synaptic currents (EPSCs) or GABAA-mediated inhibitory post synaptic

currents (IPSCs). NMDAR EPSCs were recorded while neurons were voltage clamped at

+40 mV. EPSCs were recorded in the presence of picrotoxin (100 μM) in order to block

GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) while DNQX (10 μM),

Strychnine (1 μM) and DPCPX (1 μM) were added to isolate GABAA IPSCs. EPSCs and

IPSCs were filtered at 2 kHz, digitized at 10 kHz, and collected online using pClamp 10

(Molecular Devices, Sunnyvale, CA). Currents traces were constructed by averaging 10

consecutive EPSCs/IPSCs. AMPAR miniature EPSCs (mEPSCs) were recorded in cells

voltage clamped at −70 mV in TTX (500 nM), picrotoxin (100 μM) and APV (50 μM).

mEPSCs were collected using pClamp 10 and analyzed using Mini60 Mini Analysis

Program (Synaptosoft). Detection criteria were set at > 15 pA, < 3 ms rise-time, and < 3 ms

decay-time for AMPAR mEPSCs. For preincubation experiments, compounds were bath

applied at least 20 minutes before insulin application unless otherwise specified in the text.

In some experiment, compounds were applied intracellularly via the patch pipette.

Surgical Procedures - Mice

Animals (C57BL/6J males; 25 to 27 g at start of experiment) were housed individually on a

12-hour light/dark cycle (lights on at 6 am) at a constant temperature (21°C). Mice were

given access to standard laboratory rodent chow and water ad libitum prior to and for 14

days following surgery. Before bilateral intracranial cannulae implantation, animals were

anesthetized with an intraperitoneal injection of 3:1 ketamine:xylazine and placed in a

stereotaxic frame (Kopf; Tujunga, CA). 26 gauge bilateral guide cannulae (Plastics One,

Roanoke, VA) were lowered into the VTA (AP, −3.2 mm; ML, ±0.5 mm; DV, −4.6 mm).

Cannulae were anchored to the skull surface with dental cement and occluded with metal

obturators of the same length. Mice were treated post-surgically with ketoprofen (5 mg/kg,

s.c.). Weights were monitored daily to ensure appropriate weight gain. Mice recovered for

14 days.

Cocaine-induced locomotor activity

Mice were cannulated as above. Mice were given one hour access to SHF or RF and then an

intra-VTA injection of saline. 10 min after the microinjection, mice were given cocaine (10

mg/kg, i.p.) and then placed in an open field chamber for 15 min.

Food Anticipatory Activity Experiment

After recovery from surgery mice were given standard mouse chow (6 % fat, 44 %

carbohydrate, Harlan Laboratories diet 2018) and entrained to consume their daily caloric

needs within 4 hours per day (12–4pm, PST) in a novel entrainment cage with kitty litter
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bedding. The amount of chow consumed was weighed hourly and the animals were weighed

daily after the 4 hour entrainment period. Mice were entrained for 19 days prior to VTA

microinjections. Over the course of the experiment, mice maintained their weight between

27–30g. Microinfusions were conducted using a 33 gauge cannula that protruded 0.2 mm

below the base of the cannulae to a final DV coordinate of 4.8 mm. Insulin (5 mU in 10 %

DMSO) or vehicle (10 % DMSO in saline) was infused bilaterally into the VTA (0.2 μl at

0.1 μl/min). Microinjectors were left in place for 2 min and then mice were placed in home

cages for 10 min prior to access to feeding in the entrainment cages. On test days, mice

received either vehicle or insulin. The order of drug delivery was reversed on subsequent

test days in an order-counterbalanced crossover experimental design.

After microinfusions, mice were placed in their entrainment cage with a transparent

plexiglass barrier with 4 small holes 3 cm from the base of the barrier separating the mice

from their food. Activity was digitally recorded and analyzed posthoc. After 15 min, the

barrier was lifted and mice had access to their food. Several behavioral activities were

recorded from a single session. Crossovers were defined as the number of times the mouse

crossed a center line in the barriered section of the cage. Rearing was defined as the amount

of time the animal reared on hind legs. Digging was defined as the amount of time the

mouse spent digging bedding at the barrier or elsewhere in the cage. Placements were

determined post hoc and are presented in Supplemental Figure 3. To measure basal

locomotor activity, mice were microinjected with insulin (5 mU) or vehicle 10 min prior to

placement in an open field chamber. Locomotor activity was recorded in 5 min bins and

monitored for 30 min. Two days later, the order of drug delivery was reversed on a

subsequent test day in an order-counterbalanced crossover experimental design.

Progressive Ratio Experiment

C57BL/6J males (25 to 30 g) were used for behavioral experiments in agreement with the

Swiss Federal Act on Animal Protection and the Swiss Animal Protection Ordinance and

were approved by the district veterinary office. Animals were housed individually under 12-

hour reversed dark/light cycle (lights on at 8 pm) at a constant temperature (21°C) and had

ad libitum access to laboratory chow and tap water. Mice were cannulated as above. Two

weeks after surgery, mice were trained in fixed ratio 1 (FR1) sessions in standard operant

chambers (17.5x15x18cm, Med Associates, St Albans, VT, USA) with two nose poke ports,

each associated with a cue light and a central spout for liquid delivery equipped with an

infrared head entry detector. Each active nose poke resulted in the delivery of a 10 μL 2.5%

sucrose or sweetened condensed milk, in addition to a 3-sec cue light illumination over the

active port. Liquid rewards remained available for 3 sec once access to the liquid dipper was

detected with head entry detectors. During this period, additional nosepoke entries were still

recorded but had no further consequence. Mice received 25 additional days of 30 min daily

sessions until stable nose poking (minimum 20 active nose pokes with less than 20%

variance) was reached. Then mice were switched to 2 consecutive 90 min sessions using a

progressive ratio (PR) schedule of reinforcement. Under this schedule, the number of

responses required to obtain each successive reinforcer was determined by the equation

(Richardson and Roberts, 1996), Response ratio = [5e(injection number × 0.2)]−5 to produce the

following sequence of required lever presses: 1, 2, 4, 6, 9, 12, 15, 25, 32, 40, 50, 62, etc. The
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maximal number of presses emitted to attain the final ratio was defined as the breakpoint43.

Bilateral infusions of insulin (0.065 mU (2 μM) or 3.25 mU (100 μM)), 0.2μl at 1 μl/min) or

vehicle (0.2μl at 1 μl/min) were delivered 20 min prior to the PR session. The order of drug

delivery was reversed on subsequent test days in order-counterbalanced crossover

experimental design. Placements were determined post hoc and are presented in

Supplemental Figure 3.

Conditioned Place Preference Experiment

Male Sprague-Dawley rats (Charles River, Montreal, Canada) weighing 200–220 g upon

arrival, were pair-housed (light on 7:00–19:00 h). Rats had ad libitum access to water and

food. All experiments followed the principles of laboratory animal care and were conducted

in accordance with the standards of the Canadian Council on Animal Care and the

Guidelines for the Care and Use of Mammals in Neuroscience and Behavioral Research

(National Research Council 2003). All the experiments were approved by the Committee on

Animal Care, University of British Columbia. One week following their arrival, rats were

anaesthetized with Isoflurane (Oxygen flow rate: 2L/min; Isoflurane: Induction: 4%;

Maintenance: 1.5–2.5%; Baxter corporation, Canada). Bilateral 23 gauge stainless steel

guide cannulae were implanted 1.5 mm above the Ventral Tegmental Area (VTA). The

coordinates based on the rat brain atlas (Paxinos and Watson, 1997) were the following:

Anteroposterior: −5.6 mm; Mediolateral: ±0.5; Dorsoventral:−6.5 mm. The cannula was

then secured to the skull using the dental cement anchored with 4 screws. A 30 gauge

stainless steel dummy cannula was inserted into the guide cannula to prevent particles from

entering the cannula. After 1 week of recovery, the animals began the behavioral

experiment. Each CPP apparatus was constructed from acrylic panels and contained two

larger rectangular compartments (47.2 cm × 24.6 cm × 31.5 cm) separated by guillotine

doors from a white smaller neutral zone with a smooth Plexiglass floor (21 cm × 16 cm ×

31.5 cm). The two large compartments differed with respect to contextual cues; one

contained four black and white stripe walls with a wire mesh floor and the other one had

gray walls with a Plexiglass bar floor. A digital camera placed above each apparatus

transmitted data to a computer for analysis with appropriate software (Ethovision, Noldus)

providing an accurate measure of time spent in each compartment. A pre-conditioning test

ensured that the animals did not have a preference for a compartment. The animals were

placed in the middle compartment and had access to the entire apparatus for 15 min. The

time spent in each compartment was recorded. Rats were then assigned in a counterbalanced

manner to different treatment groups, and trained according to an unbiased protocol.

Following the pre-conditioning session, rats were placed in one compartment with 40 Froot

Loops in a food tray and on alternate days, they were confined in the other compartment

with an empty food tray. Each conditioning session lasted 25 min for 8 days of conditioning.

On the test day, animals received either intra-VTA insulin (0.005 mU (63 nM) or 0.065 mU

(2 μM)) or vehicle (ACSF; 0.5 μl/hemisphere at 0.25 μl/min) 5 min prior to being placed in

the CPP apparatus for 15 min. Time spent in each compartment in the absence of food was

recorded. Placements were determined post hoc and are presented in supplemental figure 3.

Labouèbe et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2014 June 26.

P
M

C
 C

anada A
uthor M

anuscript
P

M
C

 C
anada A

uthor M
anuscript

P
M

C
 C

anada A
uthor M

anuscript



Plasma insulin measurements

Blood samples were taken from ad-lib fed P19-30 C57BL/6J mice immediately after 1hour

access to regular chow food (RF) or sweetened high fat food (SHF) or 1h after SHF.

Samples were centrifuged at 14,000 rpm for 10 min at 4°C to separate plasma. The

concentration of plasma insulin was determined using an enzyme-linked immunosorbent

assay (ELISA) according to instructions of the Mouse Ultrasensitive Insulin ELISA kit from

Alpco (Salem, NH).

Data Analysis

All values are expressed as mean ± SEM. Statistical significance was assessed using two-

tailed Student’s t tests. For electrophysiology experiments, “n” refers to the number of cells

recorded from. For each experiment several cells from 3 or more mice were used. A one-

way ANOVA followed by a post hoc test was used for multiple group comparisons.

Statistics on cumulative probability curves were performed using a Kolmogorov–Smirnov

test. Prism 5 software (GraphPad Software, Inc., La Jolla, CA) was used to perform

statistical analysis. Figures were generated using Illustrator CS2 software (Adobe Systems

Incorporated). The levels of significance are indicated as follows: *** p < 0.001, ** p <

0.01, * p < 0.05.

Drugs

All reagents were supplied by Tocris Bioscience, except for insulin (Zn2+-free), orlistat and

picrotoxin which were supplied by Sigma-Aldrich, WIN 55212-2 by Cayman Chemical, S15

by CPC Scientific Inc. and HNMPA by Calbiochem. S961 was kindly provided by L.

Schaffer as a gift (Novo Nordisk A/S, Maaloev, Denmark).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Insulin depresses AMPAR-mediated synaptic transmission onto VTA dopamine
neurons
Evoked AMPAR EPSCs were recorded before during and after bath application of insulin

(10 min). (A) Insulin depressed AMPAR EPSC amplitude in VTA dopamine neurons (filled

circles, n = 9). Intracellular application of HNMPA (300 μM), an insulin receptor tyrosine

kinase inhibitor (open circles, n = 7), or bath application of an insulin receptor antagonist

(peptide S961) throughout the experiment (open triangles, n = 7, 1 μM) blocked insulin-

induced depression of AMPAR synaptic transmission. The selective IGFR inhibitor

picropodophyllotoxin (PPP; 0.5 μM), applied before during and after insulin application

(500 nM, 10 min), blocked insulin-induced depression of AMPAR EPSCs (filled triangles, n

= 8). Example recordings of AMPAR EPSCs at 5 (black) and 40 (grey) min are shown

above of the time course. Scale bars, 10 ms and 50 pA. (B) A concentration-response curve

of maximal insulin effect taken at 40 min for each concentration is fit with a sigmoidal

curve. Insulin depressed AMPAR excitatory transmission onto VTA dopaminergic neurons

in a dose-dependent manner (1, 10, 100 or 500 nM with n = 5, 6, 5 or 7, respectively). (C)

Labouèbe et al. Page 20

Nat Neurosci. Author manuscript; available in PMC 2014 June 26.

P
M

C
 C

anada A
uthor M

anuscript
P

M
C

 C
anada A

uthor M
anuscript

P
M

C
 C

anada A
uthor M

anuscript



Bath application of cell permeable HNMPA[AM]3 (300 μM) did not reverse insulin-induced

LTD (n = 6). (D) Insulin receptor antagonist (S961, 1 μM) did not reverse insulin-induced

LTD (n = 6). (E) Evoked NMDAR EPSCs were recorded before during and after bath

application of insulin (10 min). Bath application of insulin (500 nM, 10 min) depressed

NMDAR EPSC amplitude in VTA dopamine neurons (filled circles, n = 9). Example

recording of NMDAR EPSCs at 5 (black) and 40 (grey) min is shown above of the time

course. Scale bars, 10 ms and 50 pA. (F) Bath application of insulin (500 nM, 10 min) did

not depress GABAA IPSCs amplitude in VTA dopamine neurons (filled circles, n = 7).

Traces of GABAA IPSCs overlaid at 5 (black) and 40 (grey) min are shown on top of the

time course. Scale bars, 5 ms and 50 pA. Stimulus artifacts have been removed for clarity.

Error bars represent s.e.m.
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Figure 2. Insulin-induced LTD requires Akt and mTOR signaling
(A) Bath application of rapamycin (50 nM, open triangles, n = 7), an inhibitor of mTOR

signaling, or intracellular application of 10-DEBC (20 μM), a selective inhibitor of Akt

(open circles, n = 7), blocked insulin-induced LTD. Intracellular application of PKI (20 μM,

filled circles, n = 7), a protein kinase A inhibitor, did not alter insulin-induced LTD.

Example recordings of overlaid AMPAR EPSCs at 5 (black) and 40 (grey) min in the

presence of rapamycin (open triangle), 10-DEBC (open circle) or PKI (filled circle) are

shown on top of the time course. Scale bars, 5 ms and 50 pA. (B) A bar graph showing the

averaged AMPAR EPSCs 20 min after insulin application for control (Insulin alone, open

bars); in the presence of PKI (patterned bar), 10-DEBC (shaded bar) or rapamycin (filled

bar). Using one-way ANOVA with a Dunnet’s post hoc test comparing treatments to

control, we found that 10-DEBC or Rapamycin treatments were significantly different from

insulin treatment (** p<0.01, * p<0.05). Stimulus artifacts have been removed for clarity.

Error bars represent s.e.m.
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Figure 3. Insulin-induced LTD in the VTA does not require endocytosis of AMPARs
(A) Intracellular application of GluR2-3Y (100 μg/ml), an AMPAR endocytosis inhibitor

that blocks the interaction AP2 with the GluA2 subunit, did not alter insulin-induced LTD of

AMPARs (n = 8). (B) Intracellular application of pepΔ849-853 (500 μM) did not alter

insulin-induced LTD (n = 4). (C) Intracellular application of D15 (1.5 mM), an endocytosis

inhibitor that blocks the interaction of dynamin with amphiphysin, did not alter insulin-

induced LTD of AMPARs (n = 7). (D) Example time course of AMPAR EPSCs amplitude

in a single dopamine neuron in the presence of D15. (E) A low-frequency stimulation

protocol (LFS, −40 mV, 6 min, 1 Hz stimulation) induced LTD in VTA dopamine neurons
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(filled circles, n = 8). Intracellular application of D15 blocked LFS-LTD (open circles, n =

6). S15 (1.5 mM), a scrambled version of the D15 peptide, did not affect LFS-LTD when

applied intracellularly (filled triangles, n = 8). (F) Example time course of AMPAR EPSCs

amplitude recorded before and after LFS in the presence of D15. Traces of AMPAR EPSCs

overlaid at 5 (black) and 40 (grey) min are shown on top of the time course. Scale bars, 5 ms

and 50 pA. Stimulus artifacts have been removed for clarity. Error bars represent s.e.m.
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Figure 4. Insulin-induced LTD occurs presynaptically and requires CB1R activation
(A) Example recordings of AMPAR miniature EPSCs (mEPSCs) of VTA dopamine neurons

20 to 30 min after 10 min preincubation with ACSF (left) or ACSF + insulin (500 nM,

right). Scale bars, 50 ms and 20 pA. (Bi) Frequency of mEPSCs events was significantly

decreased after insulin treatment (open bars, n = 11) compared to control (filled bars, n = 11,

p < 0.01). (Bii) AMPAR mEPSCs amplitude was not significantly different after insulin

treatment (open bars, n = 11) compared to slices treated with ACSF (filled bars, n = 10, p >

0.05). (C) Cumulative probability plots for inter-event interval (i) or mEPSCs amplitude (ii)

measured from VTA slices 20 to 30 min after 10 min preincubation with ACSF (black line)

or ACSF + insulin (500 nM, grey line) in example VTA neurons. (D) A time course

demonstrating that a paired-pulse protocol using a 50-ms inter-stimulus interval showed

facilitation after application of insulin (500 nM; filled circles; n = 6). The paired pulse ratio

(PPR) was not significantly different with application of vehicle (open circles; n = 4). Right
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panel, An example trace of a neuron recorded before (black) and 20 min (grey) after a 10-

min insulin application. Stimulus artifact has been removed for clarity.

(E) Example recordings of AMPAR mEPSCs of VTA dopamine neurons 20 to 30 min after

10 min preincubation with ACSF (left) or ACSF + insulin (500 nM, right) in the presence of

AM251 (2 μM). (Fi) In the presence of AM251, mEPSCs frequency after insulin treatment

(open bars, n = 12) was not significantly different from controls (filled bars, n = 11, p >

0.05). (Fii) In slices preincubated with AM251, AMPAR mEPSCs amplitude was not

significantly different after insulin treatment (open bars, n = 12) compared to control (filled

bars, n = 11, p > 0.05). (G) Cumulative probability plots for inter-event interval (i) or

mEPSCs amplitude (ii) measured from VTA slices 20 to 30 min after 10 min preincubation

with ACSF (black line) or ACSF + insulin (500 nM, grey line) in presence of AM251 in

example VTA neurons. A significant right-shift in the cumulative probability of mEPSC

frequency was detected in insulin-treated slices as compared to control slices (P<0.001,

Kolmogorov-Smirnov test). Bars represent mean ± s.e.m.
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Figure 5. Insulin-induced LTD is mediated by endocannabinoid retrograde signaling
(A) Bath application of AM251 (2 μM) prior to insulin blocked insulin-induced LTD (open

circles, n = 9) compared to insulin-induced LTD in the absence of AM251 (control, filled

circles, n = 7). Inset, example traces of AMPAR EPSCs at 5 (black) and 40 (grey) min in the

presence (open circle) or absence (filled circle) of AM251. Scale bars, 5 ms and 50 pA. (B)

In slices preincubated with WIN (1 μM), insulin did not suppress AMPAR EPSCs (n = 7).

Inset, example traces of AMPAR EPSCs at 5 and 40 min. Scale bars, 5 ms and 50 pA. (C)

WIN (1 μM) was bath applied 25 min after a 10 min application of insulin (500 nM). WIN

did not further alter insulin-induced LTD (n = 7). Inset, example traces of AMPAR EPSCs

at 5 (black), 40 (grey) and 55 (hatched) min. Scale bars, 5 ms and 50 pA. (D) Intracellular

application of orlistat (2 μM) abolished insulin-induced LTD (n = 6). Inset, example traces

of AMPAR EPSCs at 5 (black) and 40 (grey) min. Scale bars, 5 ms and 50 pA. (E) Bath

application of AM251 (2 μM; open circles; n = 7) or orlistat (10 μM; filled circles; n = 6) did

not further alter insulin-induced LTD. Insets, example traces of AMPAR EPSCs at 5

(black), 30 (dark grey) and 50 (light grey) min. Scale bars, 10 ms and 50 pA. (F) Bath
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application of insulin (500 nM) inhibited AMPAR EPSCs in the presence of intracellular

BAPTA (10 mM; open circles) (n=9). Preincubation with AM251 (2 μM; filled circles)

blocked insulin-induced LTD in the presence of intracellular BAPTA (10 mM) (n=9). Inset,

example traces of AMPAR EPSCs at 5 (black) and 35 (grey) min in the presence of

intracellular BAPTA (open circle) or BAPTA with AM251 (filled circle). Scale bars, 10 ms

and 100 pA. Stimulus artifacts have been removed for clarity. Error bars represent s.e.m
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Figure 6. A sweetened high fat meal increases endocannabinoid tone and occludes insulin-
induced LTD onto VTA dopamine neurons
(A) Bath application of insulin (500 nM, 10 min) did not depress AMPAR EPSCs amplitude

in VTA dopamine neurons from animals fed with sweetened high-fat (SHF) food (1h access

before sacrifice) in comparison with control animals fed with regular food (RF) chow (open

circles, n = 11 and filled circles, n = 9, respectively). Example recording of AMPAR EPSCs

at 5 (black) and 40 (grey) min is shown above of the time course. Scale bars, 5 ms and 50

pA. (B) (i) Example recordings of AMPAR mEPSCs of VTA dopamine neurons from non-

food restricted mice given one hour access to RF (ii) or one hour access to SHF. Scale bars,

50 ms and 20 pA. (iii) Frequency of mEPSCs events was significantly decreased in mice fed

SHF (filled bars, n = 11) compared to RF (open bars, n = 6, p < 0.01). (iv) AMPAR

mEPSCs amplitude was not significantly different in mice fed RF (open bars, n = 11)
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compared to mice fed SHF (filled bars, n = 6, p > 0.05). (C) Bath application of AM251 (2

μM) increased AMPAR EPSCs amplitude in VTA dopamine neurons from SHF-fed mice

(open circles, n = 6), but not RF-fed mice (filled circles, n = 9). Intracellular orlistat (2 μM)

did not alter AM251-induced increase in AMPAR EPSCs in SHF-fed mice (open triangles,

n = 9). Bath application of orlistat (10 μM) inhibited the AM251-mediated increase in

AMPAR EPSCs (filled triangles, n = 8). (D) Insulin-induced LTD was partially restored in

VTA slices cut 1 hour after a SHF meal (n = 6). Inset, example traces of AMPAR EPSCs at

5 (black) and 40 (grey) min. Scale bars, 10 ms and 100 pA (E) Maximal effect of insulin-

induced LTD in VTA slices cut immediately after mice were fed RF (open bars, n = 11) or

SHF (filled bars, n = 9) or slices cut 1 hour after mice were fed SHF (grey bars; n = 6). (F)

Cocaine-induced locomotor activity was significantly decreased in mice given 1 hour access

to SHF (filled bar) compared to RF (light shaded) (n = 9, p < 0.05). Basal locomotor activity

was not significantly different between SHF (open bar) and RF (dark shaded bar) groups (n

= 6, p > 0.05). Stimulus artifacts have been removed for clarity. Bars represent means ±

s.e.m.
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Figure 7. Insulin in the VTA decreases food anticipatory activity and conditioned place
preference, but not effort
(A) Mice were entrained to eat their daily caloric needs 4 hours per day. On test days mice

were microinjected with insulin (5 mU) or vehicle into the VTA 10 min prior to placing

them in the entrainment cage with a plexiglass barrier separating the mice from the food.

Insulin-treated mice (n = 7; filled bars) had significantly less food anticipatory activity

measured by (i) cage cross overs, (ii) time spent rearing, and (iii) time spend digging than

vehicle-treated mice (n = 7; open bars; p < 0.05). In contrast, (iv) grooming was not

significantly different between insulin-treated and saline-treated mice (n = 7, p > 0.05). (B)

Non-food restricted mice were trained to lever press for food under a progressive ratio

schedule. Breakpoint was defined as the total number of lever presses required to receive the

final reinforcer. (i) Breakpoint for 2.5% sucrose solution was not significantly different

between mice receiving intra-VTA insulin (0.065 mU (2 μM)) or vehicle (n = 9; p > 0.05).

(ii) Breakpoint for sweetened condensed milk was not significantly different between mice
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receiving intra-VTA insulin (3.25 mU (100 μM)) or vehicle (n = 6; p > 0.05). (iii)
Cumulative presses for 2.5% sucrose were not significantly different between mice

receiving intra-VTA insulin (grey line) or vehicle (black line) (p > 0.05, Kolmogorov-

Smirnov test). (iv) Cumulative presses for SCM were not significantly different between

mice receiving intra-VTA insulin (grey line) or vehicle (black line) (p > 0.05, Kolmogorov-

Smirnov test). (C) Non-food restricted rats were trained to associate one compartment with a

palatable food (Froot Loops) in a CPP apparatus. Pre-test day training did not reveal a

significant difference in preference score between groups (p > 0.05). (D) On the test day,

rats were microinjected with insulin (0.005 mU (62 nM), 0.065 mU (2 μM)) or vehicle and

placed in the neutral compartment of the CPP boxes. Preference scores were calculated by

subtracting the time spent in the food-paired chamber from the time spent in the un-paired

chamber. Intra-VTA insulin significantly reduced preference scores compared (n = 9; p <

0.05). Scores present group means ± s.e.m.
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