49 research outputs found

    Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis

    Get PDF
    Understanding the extent of local adaptation in natural populations and the mechanisms that allow individuals to adapt to their native environment is a major avenue in molecular ecology research. Evidence for the frequent occurrence of diverging ecotypes in species that inhabit multiple ecological habitats is accumulating, but experimental approaches to understanding the biological pathways as well as the underlying genetic mechanisms are still rare. Parasites are invoked as one of the major selective forces driving evolution and are themselves dependent on the ecological conditions in a given habitat. Immunological adaptation to local parasite communities is therefore expected to be a key component of local adaptation in natural populations. Here, we use next-generation sequencing technology to compare the transcriptome-wide response of experimentally infected three-spined sticklebacks from a lake and a river population, which are known to evolve under selection by distinct parasite communities. By comparing overall gene expression levels as well as the activation of functional pathways in response to parasite exposure, we identified potential differences between the two stickleback populations at several levels. Our results suggest locally adapted patterns of gene regulation in response to parasite exposure, which may reflect different local optima in the trade-off between the benefits and the disadvantages of mounting an immune response because of quantitative differences of the local parasite communities

    The feedback between selection and demography shapes genomic diversity during coevolution

    Get PDF
    Species interactions and coevolution are integral to ecological communities, but we lack empirical information on when and how these interactions generate and purge genetic diversity. Using genomic time series data from host-virus experiments, we found that coevolution occurs through consecutive selective sweeps in both species, with temporal consistency across replicates. Sweeps were accompanied by phenotypic change (resistance or infectivity increases) and expansions in population size. In the host, population expansion enabled rapid generation of genetic diversity in accordance with neutral processes. Viral molecular evolution was, in contrast, confined to few genes, all putative targets of selection. This study demonstrates that molecular evolution during species interactions is shaped by both eco-evolutionary feedback dynamics and interspecific differences in how genetic diversity is generated and maintained

    Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks

    Get PDF
    The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats

    Origin matters: Using a local reference genome improves measures in population genomics.

    Get PDF
    Genome sequencing enables answering fundamental questions about the genetic basis of adaptation, population structure and epigenetic mechanisms. Yet, we usually need a suitable reference genome for mapping population-level resequencing data. In some model systems, multiple reference genomes are available, giving the challenging task of determining which reference genome best suits the data. Here, we compared the use of two different reference genomes for the three-spined stickleback (Gasterosteus aculeatus), one novel genome derived from a European gynogenetic individual and the published reference genome of a North American individual. Specifically, we investigated the impact of using a local reference versus one generated from a distinct lineage on several common population genomics analyses. Through mapping genome resequencing data of 60 sticklebacks from across Europe and North America, we demonstrate that genetic distance among samples and the reference genomes impacts downstream analyses. Using a local reference genome increased mapping efficiency and genotyping accuracy, effectively retaining more and better data. Despite comparable distributions of the metrics generated across the genome using SNP data (i.e. π, Tajima's D and FST ), window-based statistics using different references resulted in different outlier genes and enriched gene functions. A marker-based analysis of DNA methylation distributions had a comparably high overlap in outlier genes and functions, yet with distinct differences depending on the reference genome. Overall, our results highlight how using a local reference genome decreases reference bias to increase confidence in downstream analyses of the data. Such results have significant implications in all reference-genome-based population genomic analyses

    Time and Origin of Cichlid Colonization of the Lower Congo Rapids

    Get PDF
    Most freshwater diversity is arguably located in networks of rivers and streams, but, in contrast to lacustrine systems riverine radiations, are largely understudied. The extensive rapids of the lower Congo River is one of the few river stretches inhabited by a locally endemic cichlid species flock as well as several species pairs, for which we provide evidence that they have radiated in situ. We use more that 2,000 AFLP markers as well as multilocus sequence datasets to reconstruct their origin, phylogenetic history, as well as the timing of colonization and speciation of two Lower Congo cichlid genera, Steatocranus and Nanochromis. Based on a representative taxon sampling and well resolved phylogenetic hypotheses we demonstrate that a high level of riverine diversity originated in the lower Congo within about 5 mya, which is concordant with age estimates for the hydrological origin of the modern lower Congo River. A spatial genetic structure is present in all widely distributed lineages corresponding to a trisection of the lower Congo River into major biogeographic areas, each with locally endemic species assemblages. With the present study, we provide a phylogenetic framework for a complex system that may serve as a link between African riverine cichlid diversity and the megadiverse cichlid radiations of the East African lakes. Beyond this we give for the first time a biologically estimated age for the origin of the lower Congo River rapids, one of the most extreme freshwater habitats on earth

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Fewer invited talks by women in evolutionary biology symposia.

    Get PDF
    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks
    corecore