535 research outputs found

    Mapping metals at high redshift with far-infrared lines

    Full text link
    Cosmic metal enrichment is one of the key physical processes regulating galaxy formation and the evolution of the intergalactic medium (IGM). However, determining the metal content of the most distant galaxies has proven so far almost impossible; also, absorption line experiments at z6z\sim6 become increasingly difficult because of instrumental limitations and the paucity of background quasars. With the advent of ALMA, far-infrared emission lines provide a novel tool to study early metal enrichment. Among these, the [CII] line at 157.74 μ\mum is the most luminous line emitted by the interstellar medium of galaxies. It can also resonant scatter CMB photons inducing characteristic intensity fluctuations (ΔI/ICMB\Delta I/I_{CMB}) near the peak of the CMB spectrum, thus allowing to probe the low-density IGM. We compute both [CII] galaxy emission and metal-induced CMB fluctuations at z6z\sim 6 by using Adaptive Mesh Refinement cosmological hydrodynamical simulations and produce mock observations to be directly compared with ALMA BAND6 data (νobs272\nu_{obs}\sim 272 GHz). The [CII] line flux is correlated with MUVM_{UV} as log(Fpeak/μJy)=27.2052.253MUV0.038MUV2\log(F_{peak}/\mu{\rm Jy})=-27.205-2.253\,M_{UV}-0.038\,M_{UV}^2. Such relation is in very good agreement with recent ALMA observations (e.g. Maiolino et al. 2015; Capak et al. 2015) of MUV<20M_{UV}<-20 galaxies. We predict that a MUV=19M_{UV}=-19 (MUV=18M_{UV}=-18) galaxy can be detected at 4σ4\sigma in 40\simeq40 (2000) hours, respectively. CMB resonant scattering can produce ±0.1μ\simeq\pm 0.1\,\muJy/beam emission/absorptions features that are very challenging to be detected with current facilities. The best strategy to detect these signals consists in the stacking of deep ALMA observations pointing fields with known MUV19M_{UV}\simeq-19 galaxies. This would allow to simultaneously detect both [CII] emission from galactic reionization sources and CMB fluctuations produced by z6z\sim6 metals.Comment: 13 pages, 6 figure

    Fermion Virtual Effects in e+e>W+We^+ e^- -> W^+ W^- Cross Section

    Full text link
    We analyse the contribution of new heavy virtual fermions to the e+eW+We^+e^- \rightarrow W^+W^- cross section. We find that there exists a relevant interplay between trilinear and bilinear oblique corrections. The result strongly depends on the chiral or vector--like nature of the new fermions. As for the chiral case we consider sequential fermions: one obtains substantial deviation from the Standard model prediction, making the effect possibly detectable at s=500\sqrt{s}=500 or 10001000 GeV linear colliders. As an example for the vector--like case we take a SUSY extension with heavy charginos and neutralinos: due to cancellation, the final effect turns out to be negligible.Comment: uuencoded, gz-compressed, tar-ed file. 8 pages, 4 EPS figures, uses EPSFIG.ST

    Discrete Flavor Symmetries and Models of Neutrino Mixing

    Get PDF
    We review the application of non abelian discrete groups to the theory of neutrino masses and mixing, which is strongly suggested by the agreement of the Tri-Bimaximal mixing pattern with experiment. After summarizing the motivation and the formalism, we discuss specific models, based on A4, S4 and other finite groups, and their phenomenological implications, including lepton flavor violating processes, leptogenesis and the extension to quarks. In alternative to Tri-Bimaximal mixing the application of discrete flavor symmetries to quark-lepton complementarity and Bimaximal Mixing is also considered.Comment: 54 pages, 3 figures, minor changes in the text and references adde

    LFV and Dipole Moments in Models with A4 Flavour Symmetry

    Full text link
    It is presented an analysis on lepton flavour violating transitions, leptonic magnetic dipole moments and electric dipole moments in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is motivated by the approximate Tri-Bimaximal mixing observed in neutrino oscillations. A low-energy effective Lagrangian is constructed, where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. Two separate cases, a supersymmetric and a general one, are described. An upper limit on the reactor angle of a few percent is concluded.Comment: 10 pages, 1 figure. Adapted from a talk given at "DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries", December 11-16 2008, Valencia, Spai

    Outflows in the Gaseous Discs of Active Galaxies and their impact on Black Hole Scaling Relations

    Full text link
    To tackle the still unsolved and fundamental problem of the role of Active Galactic Nuclei (AGN) feedback in shaping galaxies, in this work we implement a new physical treatment of AGN-driven winds into our semi-analytic model of galaxy formation. To each galaxy in our model, we associate solutions for the outflow expansion and the mass outflow rates in different directions, depending on the AGN luminosity, on the circular velocity of the host halo, and on gas content of the considered galaxy. To each galaxy we also assign an effective radius derived from energy conservation during merger events, and a stellar velocity dispersion self-consistently computed via Jeans modelling. We derive all the main scaling relations between Black hole (BH) mass and total/bulge stellar mass, velocity dispersion, host halo dark matter mass, and star formation efficiency. We find that our improved AGN feedback mostly controls the dispersion around the relations but plays a subdominant role in shaping slopes and/or normalizations of the scaling relations. Including possible limited-resolution selection biases in the model provides better agreement with the available data. The model does not point to any more fundamental galactic property linked to BH mass, with velocity dispersion playing a similar role with respect to stellar mass, in tension with present data. In line with other independent studies carried out on comprehensive semi-analytic and hydrodynamic galaxy-BH evolution models, our current results signal either an inadequacy of present cosmological models of galaxy formation in fully reproducing the local scaling relations, in terms of both shape and residuals, and/or point to an incompleteness issue affecting the local sample of dynamically-measured BHs.Comment: 21 pages, accepted for publications in Astronomy & Astrophysic

    The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    Get PDF
    We present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO observations obtained with IRAM/PdBI, and we analyze archival Chandra and NuSTAR observations. We constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular outflow has a size of ~1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to ~1 kpc, thus implying that the density of the outflowing material decreases from the nucleus outwards as r2r^{-2}. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to ~1 kpc, thus implying a limit on its age of ~1 Myr. We find M˙OF=[5001000] M yr1\dot M_{OF}=[ 500-1000]~ M_{\odot}~yr^{-1} and E˙kin,OF=[710]×1043\dot E_{kin,OF}=[7-10]\times 10^{43} erg s1^{-1}. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20000 km s1^{-1}, M˙UFO=[0.32.1] Myr1\dot M_{UFO}=[0.3- 2.1] ~M_\odot yr^{-1}, and momentum load P˙UFO/P˙rad=[0.21.6]\dot P_{UFO}/\dot P_{rad}=[0.2-1.6].We find E˙kin,UFOE˙kin,OF\dot E_{kin,UFO}\sim \dot E_{kin,OF} as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. We estimate a momentum boost P˙OF/P˙UFO[3060]\dot P_{OF}/\dot P_{UFO}\approx [30-60]. The ratios E˙kin,UFO/Lbol,AGN=[15]%\dot E_{kin, UFO}/L_{bol,AGN} =[ 1-5]\% and E˙kin,OF/Lbol,AGN=[13]%\dot E_{kin,OF}/L_{bol,AGN} = [1-3]\% agree with the requirements of the most popular models of AGN feedback.Comment: 16 pages, 17 figures. Accepted for publication in A&

    The fate of the leptophobic Z'

    Get PDF
    We review the main features of the leptophobic-Z' phenomenology, commenting on the prospects of these models after the recent experimental results on R_c, R_b and after the recent theoretical analyses of jet production at the Tevatron

    Natural relations among physical observables in the neutrino mass matrix

    Get PDF
    We find all possible relations among physical observables arising from neutrino mass matrices that describe in a natural way the currently observed pattern (tan_23 and tan_12 large, dm^2_Sun/dm^2_Atm and tan_13 small) in terms of a minimum number of parameters. Natural here means due only to the relative smallness (vanishing) of some parameters in the relevant lagrangian, without special relations or accidental cancellations among them.Comment: 14 pages, 1 eps figur

    The Golden Ratio Prediction for the Solar Angle from a Natural Model with A5 Flavour Symmetry

    Full text link
    We formulate a consistent model predicting, in the leading order approximation, maximal atmospheric mixing angle, vanishing reactor angle and tan {\theta}_12 = 1/{\phi} where {\phi} is the Golden Ratio. The model is based on the flavour symmetry A5 \times Z5 \times Z3, spontaneously broken by a set of flavon fields. By minimizing the scalar potential of the theory up to the next-to-leading order in the symmetry breaking parameter, we demonstrate that this mixing pattern is naturally achieved in a finite portion of the parameter space, through the vacuum alignment of the flavon fields. The leading order approximation is stable against higher-order corrections. We also compare our construction to other models based on discrete symmetry groups.Comment: 28 pages, 2 figures. Minor changes, references added. Corrected typos in Appendix A. Version appeared on JHE

    The Double Cover of the Icosahedral Symmetry Group and Quark Mass Textures

    Full text link
    We investigate the idea that the double cover of the rotational icosahedral symmetry group is the family symmetry group in the quark sector. The icosahedral (A5) group was previously proposed as a viable family symmetry group for the leptons. To incorporate the quarks, it is highly advantageous to extend the group to its double cover, as in the case of tetrahedral (A4) symmetry. We provide the basic group theoretical tools for flavor model-building based on the binary icosahedral group I' and construct a model of the quark masses and mixings that yields many of the successful predictions of the well-known U(2) quark texture models.Comment: 10 pages, references added, typos in up quark mass matrix correcte
    corecore