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I. INTRODUCTION

Experiments on neutrino oscillations, which measure
differences between squared masses and mixing angles
�Altarelli and Feruglio, 2004; Grimus, 2006; Mohapatra
and Smirnov, 2006; Mohapatra et al., 2007; Gonzalez-
Garcia and Maltoni, 2008a; Altarelli, 2009�, have estab-
lished that neutrinos have a mass. We refer the inter-
ested reader, in particular, to Altarelli and Feruglio
�2004� for an introduction to the subject, the main re-
sults, the basic formalism, and all definitions and nota-
tions. Two distinct oscillation frequencies have first been
measured in solar �Hosaka et al., 2006a; Cravens et al.,

2008; Aharmim et al., 2010� and atmospheric �Abe et al.,
2006; Hosaka et al., 2006b� neutrino oscillations and
later confirmed by experiments on Earth, such as
KamLAND �Abe et al., 2008�, K2K �Ahn et al., 2006�,
MINOS �Kafka, 2010�, and OPERA �Agafonova et al.,
2010�. A signal corresponding to a third mass difference
was claimed by the LSND experiment �Athanassopoulos
et al., 1996, 1998a, 1998b� but not confirmed by
KARMEN �Armbruster et al., 2002� and recently by
MiniBooNE �Aguilar-Arevalo et al., 2009a, 2009b�. Two
well separated differences need at least three different
neutrino mass eigenstates involved in oscillations. Actu-
ally, the three known neutrino species can be sufficient.
At least two �’s must be massive while, in principle, the
third one could still be massless. In the following, we
assume the simplest picture with three active neutrinos,
no sterile neutrinos, and CPT invariance. The mass
eigenstates involved in solar oscillations are m1 and m2

and, by definition, �m2�� �m1�, so that �msun
2 =�m21

2

= �m2�2− �m1�2�0. The atmospheric neutrino oscillations
involve m3: �matm

2 = ��m31
2 � with �m31

2 = �m3�2− �m1�2 either
positive �normal hierarchy� or negative �inverse hierar-
chy�. The present data �Strumia and Vissani, 2006; Ban-
dyopadhyay et al., 2008; Fogli et al., 2008a, 2008b;
Gonzalez-Garcia and Maltoni, 2008b; Maltoni and
Schwetz, 2008; Schwetz et al., 2008� are compatible with
both cases. The degenerate spectrum occurs when the
average absolute value of the masses is much larger than
all mass squared differences: �mi�2� ��mhk

2 �. With the
standard set of notations and definitions �Altarelli and
Feruglio, 2004� the present data are summarized in
Table I.

Oscillation experiments do not provide information
about either the absolute neutrino mass scale or the
Dirac or Majorana nature of neutrinos. Limits on the
mass scale are obtained �Altarelli and Feruglio, 2004�
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from the end point of the tritium beta decay spectrum,
from cosmology �see, for example, Lesgourgues and Pas-
tor �2006��, and from neutrinoless double beta decay
�0���� �for a recent review, see, for example, Avignone
et al. �2008��. From tritium we have an absolute upper
limit of 2.2 eV �at 95% confidence limit �C.L.�� on the
mass of electron antineutrino �Kraus et al., 2005�, which,
combined with the observed oscillation frequencies un-
der the assumption of three CPT-invariant light neutri-
nos, also represents an upper bound on the masses of
the other active neutrinos. Complementary information
on the sum of neutrino masses is also provided by the
galaxy power spectrum combined with measurements of
the cosmic microwave background anisotropies. Accord-
ing to recent analyses of the most reliable data �Fogli et
al., 2008� �i�mi��0.60–0.75 eV �at 95% C.L.� depending
on the retained data �the numbers for the sum have to
be divided by 3 in order to obtain a limit on the mass of
each neutrino�. The discovery of 0��� decay would be
important because it would establish lepton number vio-
lation and the Majorana nature of �’s as well as provide
direct information on the absolute scale of neutrino
masses. The present limit from 0��� �with large ambi-
guities from nuclear matrix elements� is about �mee�
�0.3–0.8 eV �Avignone et al., 2008; Fogli et al., 2008�
�see Eq. �4��.

After KamLAND �Abe et al., 2008�, SNO �Aharmim
et al., 2010�, and the upper limits on the absolute value
of neutrino masses, not too much hierarchy in the spec-
trum of neutrinos is indicated by experiments,

r = �msol
2 /�matm

2 � 1/30. �1�

Precisely r=0.032−0.005
+0.006 at 3�’s �Fogli et al., 2008a, 2008b;

Maltoni and Schwetz, 2008; Schwetz et al., 2008�. Thus,
for a hierarchical spectrum, m2 /m3��r�0.2, which is
comparable to the Cabibbo angle 	C�0.22 or to its lep-
tonic analog �m
 /m��0.24. This suggests that the same
hierarchy parameter �raised to powers with O�1� expo-
nents� may apply for quark, charged-lepton, and neu-
trino mass matrices. This, in turn, indicates that, in the
absence of some special dynamical reason, we do not
expect quantities such as �13 or the deviation of �23 from
its maximal value to be too small. Indeed, it would be
important to know how small the mixing angle �13 is and
how close to maximal �23 is.

Given that neutrino masses are certainly extremely
small, it is really difficult from the theory point of view

to avoid the conclusion that the lepton number L con-
servation is probably violated and that �’s are Majorana
fermions. In this case, the small size of neutrino masses
can be naturally explained as inversely proportional to
the large scale where L conservation is violated. If neu-
trinos are Majorana particles, their masses arise from
the generic dimension-five nonrenormalizable operator
of the form �Weinberg, 1979�

O5 =
�Hl�i

T
ij�Hl�j

M
+ H.c., �2�

with H being the ordinary Higgs doublet, li being the
SU�2� lepton doublets, 
 being a matrix in flavor space,
and M being a large scale of mass, and a charge conju-
gation matrix C between the lepton fields is understood.
For 
ij	O�1�, neutrino masses generated by O5 are of
the order m�	v2 /M where v�O�100 GeV� is the
vacuum expectation value of the ordinary Higgs. A par-
ticular realization of this effective mass operator is given
by the seesaw mechanism �Minkowski, 1977; Gell-Mann
et al., 1979; Yanagida, 1979; Glashow, 1980; Mohapatra
and Senjanovic, 1980�, where M is derived from the ex-
change of heavy neutral objects of weak isospin 0 or 1.
In the simplest case the exchanged particle is the right-
handed �RH� neutrino �c �a gauge singlet fermion de-
scribed here through its charge conjugate field�, and the
resulting neutrino mass matrix reads �type I seesaw� �Al-
tarelli and Feruglio, 2004�

m� = mD
T M−1mD, �3�

where mD and M denote the Dirac neutrino mass matrix
�defined as �cTmD�� and the Majorana mass matrix of �c

�defined as �cTM�c�, respectively. As one sees, the light
neutrino masses are quadratic in the Dirac masses and
inversely proportional to the large Majorana mass. For
m�	��matm

2 	0.05 eV and m�	mD
2 /M with mD	v

	200 GeV, we find M	1015 GeV which, indeed, is an
impressive indication that the scale for lepton number
violation is close to the grand unified scale MGUT. Thus,
neutrino masses are probably a probe into the physics
near MGUT. This argument, in our opinion, strongly dis-
courages models where neutrino masses are generated
near the weak scale and are suppressed by some special
mechanism.

Oscillation experiments cannot distinguish between
Dirac and Majorana neutrinos. The detection of neu-

TABLE I. Fits to neutrino oscillation data.

Quantity
Fogli et al., 2008a,

2008b
Maltoni and Schwetz, 2008;

Schwetz et al., 2008

�msun
2 �10−5 eV2� 7.67−0.19

+0.16 7.65−0.20
+0.23

�matm
2 �10−3 eV2� 2.39−0.08

+0.11 2.40−0.11
+0.12

sin2 �12 0.312−0.018
+0.019 0.304−0.016

+0.022

sin2 �23 0.466−0.058
+0.073 0.50−0.06

+0.07

sin2 �13 0.016±0.010 0.010−0.011
+0.016
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trinoless double beta decay would provide direct evi-
dence of L nonconservation and the Majorana nature of
neutrinos. It would also offer a way to possibly disen-
tangle the three cases of degenerate, normal, or inverse
hierarchy neutrino spectrum. The quantity, which is
bound by experiments on 0���, is the 11 entry of the �

mass matrix, which in general, from m�=U*mdiagU
†, is

given by

�mee� = ��1 − s13
2 ��m1c12

2 + m2s12
2 � + m3e2i�s13

2 � , �4�

where U
UPMNS is the mixing matrix, m1,2 are complex
masses �including the Majorana phases� while m3 can be
taken as real and positive, and � is the UPMNS phase
measurable from CP violation in oscillation experi-
ments. Starting from this general formula it is simple to
derive the bounds for degenerate, inverse hierarchy, or
normal hierarchy mass patterns shown in Fig. 1 �Fer-
uglio et al., 2002�. In the next few years a new generation
of experiments will reach a larger sensitivity on 0��� by
about an order of magnitude. If these experiments ob-
serve a signal, this will be compatible with both types of
neutrino mass ordering; if not, then the normal hierar-
chy case remains a possibility. Establishing that L is vio-
lated in particle interactions would also strongly support
the possibility that the observed baryon asymmetry is
generated via leptogenesis through the out of equilib-
rium, CP, and L violating decays of the heavy RH neu-
trinos �see Sec. X�.

Neutrino mixing is important because it could, in prin-
ciple, provide new clues for the understanding of the
flavor problem. Even more so since neutrino mixing
angles show a pattern that is completely different from
that of quark mixing: for quarks all mixing angles are
small, for neutrinos two angles are large �one is even
compatible with the maximal value�, and only the third
one is small. For building up theoretical models of neu-
trino mixing one must guess which features of the data
are really relevant in order to identify the basic prin-
ciples for the formulation of the model. In particular, it
is an experimental fact �Strumia and Vissani, 2006; Ban-

dyopadhyay et al., 2008; Fogli et al., 2008a, 2008b;
Gonzalez-Garcia and Maltoni, 2008b; Maltoni and
Schwetz, 2008; Schwetz et al., 2008� that within measure-
ment errors the observed neutrino mixing matrix �Al-
tarelli and Feruglio, 2004� is compatible with the so-
called tribimaximal �TB� form in Eq. �12� �Harrison and
Scott, 2002, 2003, 2004; Harrison et al., 2002�. The best
measured neutrino mixing angle �12 is just about 1� be-
low the TB value tan2 �12=1/2, while the other two
angles are well inside the 1� interval �see Table I�. Thus,
one possibility is that one takes this coincidence seri-
ously and only considers models where TB mixing is
automatically a good first approximation. Alternatively,
one can assume that the agreement of the data with TB
mixing is accidental. Indeed, there are many models that
fit the data and yet TB mixing does not play any role in
their architecture. For example, from Albright and
Rodejohann �2008�, there is a list of grand unified
SO�10� models with parameters that can be fitted to the
neutrino mixing angles, leading to a good agreement
with the data, although most of these models have no
built-in relation with TB mixing �see also Bertolini et al.
�2006��. Another class of examples is from Plentinger
and Seidl �2008�. Clearly, for this type of models, in most
cases, different mixing angles could also be accommo-
dated by simply varying the fitted values of the param-
eters. If instead we assume that TB mixing has a real
physical meaning, then we are led to consider models
that naturally produce TB mixing in first approximation
and only a special dynamics can lead to this peculiar
mixing matrix. Discrete non-Abelian groups �for an in-
troduction see, for example, Frampton and Kephart
�1995� and Ishimori et al. �2010�� naturally emerge as
suitable flavor symmetries. In fact, the TB mixing matrix
immediately suggests rotations by fixed discrete angles.
It has been found that a broken flavor symmetry based
on the discrete group A4 �the group of even permuta-
tions of 4 elements, which can be seen as the invariance
group of a rigid regular tetrahedron� appears to be par-
ticularly suitable to reproduce this specific mixing pat-
tern in leading order �LO�. A nonexhaustive list of pa-
pers that discuss the application of A4 to neutrino
mixing is given by Ma and Rajasekaran �2001� Babu et
al. �2003�, Hirsch et al. �2004, 2005, 2007, 2008�, Ma
�2004a, 2004b, 2005a, 2005b, 2005c, 2006b, 2006c, 2007�,
Altarelli and Feruglio �2005, 2006�, Babu and He �2005�,
Chen et al. �2005�, Zee �2005�, Adhikary et al. �2006�, He
et al. �2006�, Ma et al. �2006�, Altarelli et al. �2007, 2008�,
Lavoura and Kuhbock �2007�, Morisi et al. �2007�, Yin
�2007�, Adhikary and Ghosal �2008�, Bazzocchi, Frige-
rio, and Morisi �2008�, Bazzocchi, Kaneko, and Morisi
�2008�, Bazzocchi, Morisi, and Picariello �2008�, Brah-
machari et al. �2008�, Csaki et al. �2008�, Frampton and
Matsuzaki �2008�, Grimus and Kuhbock �2008�, Honda
and Tanimoto �2008�, Altarelli and Meloni �2009�, Baz-
zocchi, Morisi, Picariello, and Torrente-Lujan �2009�,
Ciafaloni et al. �2009�, Lin �2009a, 2009b�, Morisi �2009�,
Antusch et al. �2010�, del Aguila et al. �2010�, and Ka-
dosh and Pallante �2010�. The choice of this particular
discrete group is not unique and, for example, other so-

FIG. 1. �Color online� A plot of mee in eV, the quantity mea-
sured in neutrinoless double beta decay, given in Eq. �4�, vs the
lightest neutrino mass m1, also in eV. The upper �lower� band
is for inverse �normal� hierarchy. From Feruglio et al., 2002.
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lutions based on alternative discrete flavor symmetries
�see, for example, T� �Frampton and Kephart, 1995,
2007; Aranda et al., 2000a, 2000b; Aranda, 2007; Carr
and Frampton, 2007; Chen and Mahanthappa, 2007; Fer-
uglio et al., 2007; Ding, 2008; Frampton and Matsuzaki,
2009�, S4 �Mohapatra et al., 2004; Cai and Yu, 2006;
Hagedorn et al., 2006, 2010; Ma, 2006a; Bazzocchi and
Morisi, 2009; Bazzocchi et al., 2009a, 2009b; Dutta et al.,
2009, 2010; Ishimori et al., 2009, 2010; Ding, 2010;
Meloni, 2010; Morisi and Peinado, 2010�, ��27� �de Me-
deiros Varzielas et al., 2007a; Luhn et al., 2007b; Grimus
and Lavoura, 2008; Ma, 2008; Bazzocchi and de Me-
deiros Varzielas, 2009; Ding, 2010�, and other groups
�Luhn et al., 2007a, 2007c; Everett and Stuart, 2009; King
and Luhn, 2009a, 2009b�� or continuous flavor symme-
tries �King, 2005; de Medeiros Varzielas and Ross, 2006;
King and Malinsky, 2006; de Medeiros Varzielas et al.,
2007b; Adulpravitchai et al., 2009b; Berger and Gross-
man, 2010� have also been considered �for other ap-
proaches to TB mixing, see Xing �2002�, Matias and Bur-
gess �2005�, Grimus and Lavoura �2006, 2009�, Luo and
Xing �2006�, Koide �2007a�, and Babu and Gabriel
�2010��, but the A4 models have a particularly economi-
cal and attractive structure, for example, in terms of
group representations and of field content. In most of
the models, A4 is accompanied by additional flavor sym-
metries, either discrete such as ZN or continuous such as
U�1�, which are necessary to eliminate unwanted cou-
plings to ensure the needed vacuum alignment, and to
reproduce the observed mass hierarchies. Given the set
of flavor symmetries and having specified the field con-
tent, the nonleading corrections to TB mixing arising
from higher order effects can be evaluated in a well-
defined expansion. In the absence of specific dynamical
tricks in a generic model, all the three mixing angles
receive corrections of the same order of magnitude.
Since the experimentally allowed departures of �12 from
the TB value sin2 �12=1/3 are small, at most O�	C

2 �, with
	C as the Cabibbo angle, it follows that both �13 and the
deviation of �23 from the maximal value are typically
expected in these models to also be at most O�	C

2 �.1 A
value of �13�O�	C

2 � is within the sensitivity of the ex-
periments which are now in preparation and will take
data in the near future.

Returning to the possibility that the agreement of the
data with TB mixing is accidental, we observe that the
present data do not exclude a value for �13, i.e., �13
�O�	C�, larger than generally implied by models with
approximate TB mixing. In fact, recent analysis of the
available data lead to sin2 �13=0.016±0.010 at 1� �Fogli
et al., 2008a, 2008b�, sin2 �13=0.010−0.011

+0.016 at 1� �Maltoni
and Schwetz, 2008; Schwetz et al., 2008�, sin2 �13

=0.014−0.011
+0.013 at 1� �Gonzalez-Garcia et al., 2010�, and

sin2 �13=0.010−0.009
+0.013 at 1� �Gonzalez-Garcia et al., 2010�,

which are compatible with both options. If experimen-

tally it is found that �13 is near its present upper bound,
this could be interpreted as an indication that the agree-
ment with the TB mixing is accidental. In fact, a differ-
ent empirical observation is that �12+	C�� /4, a rela-
tion known as quark-lepton complementarity �Minakata
and Smirnov, 2004; Raidal, 2004�, or similarly �12

+�m
 /m��� /4. No compelling model leading, without
parameter fixing, to the exact complementarity relation
has been produced so far. Probably the exact comple-
mentarity relation is to be replaced with something like
�12+O�	C��� /4 or �12+O��m
 /m���� /4 �which we
could call “weak” complementarity� �Altarelli et al.,
2004, 2009; Antusch et al., 2005; Cheung et al., 2005;
Datta et al., 2005; Ferrandis and Pakvasa, 2005; Framp-
ton and Mohapatra, 2005; Kang et al., 2005; King, 2005;
Li and Ma, 2005; Lindner et al., 2005; Minakata, 2005;
Ohlsson, 2005; Xing, 2005; Dighe et al., 2006; Schmidt
and Smirnov, 2006; Chauhan et al., 2007; Hochmuth and
Rodejohann, 2007; Plentinger et al., 2007, 2008�. If we
take any of these complementarity relations as a serious
hint, then a scheme would be relevant where bimaximal
�BM� mixing, instead of TB mixing, is the correct first
approximation, modified by terms of O�	C�. A compari-
son of the TB or BM mixing values with the data on
sin2 �12 is shown in Fig. 2.

A special dynamics is also needed for BM mixing and
again discrete symmetry groups offer possible solutions.
For example, a model �Altarelli et al., 2009� based on S4,
the permutation group of four elements, naturally leads
to BM mixing in LO. This model is built in such a way
that the dominant corrections to the BM mixing only
arise from the charged-lepton sector at next-to-leading-
order �NLO� and naturally inherit 	C as the relevant
expansion parameter. As a result, the mixing angles de-
viate from the BM values by terms O�	C� �at most�, and
weak complementarity holds. A crucial feature of this
particular model is that only �12 and �13 are corrected by
terms of O�	C�, while �23 is unchanged at this order
�which is essential to make the model agree with the
present data�.

Other types of LO approximations for the lepton mix-
ing pattern have been suggested. For instance, a viable
first approximation of the solar mixing angle is �12

=tan−1�1/�� where �= �1+�5� /2 is the golden ratio �Ka-
jiyama et al., 2007�. This leads to sin2 �12=1/ �1+�2�
	0.276, not far from the allowed range. Another pos-
sible connection with the golden ratio has been pro-
posed by Rodejohann �2009�. In this case, cos �12=� /2
or sin2 �12=1/4�3−��	0.345. There have been attempts

1By O�	C
2 � we mean numerically of order 	C

2 . As 	C�0.22 a
linear term in 	C with a small coefficient can easily be O�	C

2 �.

FIG. 2. �Color online� The values of sin2 �12 for TB or BM
mixing are compared with the data.
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to reproduce these values by exploiting flavor symme-
tries of icosahedral type �Everett and Stuart, 2009� for
the first possibility or of dihedral type �Adulpravitchai,
Blum, and Rodejohann, 2009� for the second case.

Thus, discrete flavor symmetries may play an impor-
tant role in models of neutrino mixing. In particular, this
is the case if some special patterns indicated by the data
as possible first approximations, such as TB or BM mix-
ing or others, are indeed physically relevant. A list of the
simplest discrete groups that have been considered for
neutrino mixing, with some of their properties, is given
in Table II. In the present review, we discuss the formal-
ism and the physics of a nonexhaustive list of models of
neutrino mixing based on discrete symmetries.

II. SPECIAL PATTERNS OF NEUTRINO MIXING

Given the Pontecorvo-Maki–Nagakawa–Sakata
�PMNS� mixing matrix U �see Altarelli and Feruglio
�2004� for its general definition and parametrization�,
the general form of the neutrino mass matrix, in terms of
the �complex2� mass eigenvalues m1 ,m2 ,m3, in the basis
where charged leptons are diagonal, is given by

2We absorb the Majorana phases in the mass eigenvalues mi
rather than in the mixing matrix U. The dependence on these
phases drops in neutrino oscillations.

TABLE II. Some small discrete groups used for model building.

Group d
Irreducible

representation Presentation References

D3�S3 6 1, 1�, 2 A3=B2= �AB�2=1 a

D4 8 11, …, 14, 2 A4=B2= �AB�2=1 b

D7 14 1, 1�, 2, 2�, 2� A7=B2= �AB�2=1 c

A4 12 1, 1�, 1�, 3 A3=B2= �AB�3=1 d

A5�PSL2�5� 60 1, 3, 3�, 4, 5 A3=B2= �BA�5=1 e

T� 24 1, 1�, 1�, 2, 2�, 2�, 3 A3= �AB�3=R2=1, B2=R f

S4 24 1, 1�, 2, 3, 3� BM:A4=B2= �AB�3=1 g

TB:A3=B4= �BA2�2=1
��27��Z3’Z3 27 11, 19, 3, 3̄

h

PSL2�7� 168 1, 3, 3̄, 6, 7, 8 A3=B2= �BA�7= �B−1A−1BA�4=1 i

T7�Z7’Z3 21 1, 1�, 1�̄, 3, 3̄ A7=B3=1, AB=BA4 j

aKubo et al., 2003; Chen et al., 2004; Kubo, 2004; Caravaglios and Morisi, 2005a, 2005b; Dermisek
and Raby, 2005; Lavoura and Ma, 2005; Grimus and Lavoura, 2006; Haba and Yoshioka, 2006; Koide,
2006a, 2006b, 2007b; Mohapatra et al., 2006a, 2006b; Morisi, 2006; Morisi and Picariello, 2006; Tan-
imoto and Yanagida, 2006; Teshima, 2006; Kaneko et al., 2007; Chen and Wolfenstein, 2008; Feruglio
and Lin, 2008; and Picariello, 2008.

bGrimus et al., 2004 and Adulpravitchai, Blum, and Hagedorn, 2009.
cBlum, Hagedorn, and Hohenegger, 2008 and Blum, Hagedorn, and Lindner, 2008.
dMa and Rajasekaran, 2001; Babu et al., 2003; Hirsch et al., 2004, 2005, 2007, 2008; Ma, 2004a, 2004b,

2005a, 2005b, 2005c, 2006b, 2006c, 2007; Altarelli and Feruglio, 2005, 2006; Babu and He, 2005; Chen
et al., 2005; Zee, 2005; Adhikary et al., 2006; He et al., 2006; Ma et al., 2006; Altarelli et al., 2007, 2008;
Lavoura and Kuhbock, 2007; Morisi et al., 2007; Yin, 2007; Adhikary and Ghosal, 2008; Bazzocchi,
Frigerio, and Morisi, 2008; Bazzocchi, Kaneko, and Morisi, 2008; Bazzocchi, Morisi, and Picariello,
2008; Brahmachari et al., 2008; Csaki et al., 2008; Frampton and Matsuzaki, 2008; Grimus and Kuh-
bock, 2008; Honda and Tanimoto, 2008; Altarelli and Meloni, 2009; Bazzocchi, Morisi, Picariello, and
Torrente-Lujan, 2009; Ciafaloni et al., 2009; Lin, 2009a, 2009b; Morisi, 2009; Antusch et al., 2010; del
Aguila et al., 2010; and Kadosh and Pallante, 2010.

eEverett and Stuart, 2009.
fFrampton and Kephart, 1995, 2007; Aranda et al., 2000a, 2000b; Aranda, 2007; Carr and Frampton,

2007; Chen and Mahanthappa, 2007; Feruglio et al., 2007; Ding, 2008; and Frampton and Matsuzaki,
2009.

gMohapatra et al., 2004; Cai and Yu, 2006; Hagedorn et al., 2006, 2010; Ma, 2006a; Zhang, 2007;
Bazzocchi and Morisi, 2009; Bazzocchi et al., 2009a, 2009b; Dutta et al., 2009, 2010; Ishimori et al.,
2009, 2010; Ding, 2010; Meloni, 2010; and Morisi and Peinado, 2010.

hde Medeiros Varzielas et al., 2007a; Luhn et al., 2007b; Grimus and Lavoura, 2008; Ma, 2008; and
Bazzocchi and de Medeiros Varzielas, 2009.

iLuhn et al., 2007a and King and Luhn, 2009a, 2009b.
jLuhn et al., 2007c.
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m� = U* diag�m1,m2,m3�U†. �5�

We present here a number of particularly relevant forms
of U and m� that will be important in the following. We
start with the most general mass matrix that corresponds
to �13=0 and �23 maximal, that is, to U given by �in a
particular phase convention�

U =�
c12 s12 0

−
s12

�2

c12

�2
−

1
�2

−
s12

�2

c12

�2

1
�2
� , �6�

with c12
cos �12 and s12
sin �12. By applying Eq. �5� we
obtain a matrix of the form �Fukuyama and Nishiura,
1997; Mohapatra and Nussinov, 1999; Lam, 2001; Ma
and Raidal, 2001; Ghosal, 2003; Kitabayashi and Yasue,
2003, 2005; de Gouvêa, 2004; Grimus and Lavoura, 2004;
Koide, 2004; Grimus et al., 2005; Mohapatra and Nasri,
2005; Mohapatra and Rodejohann, 2005; Mohapatra et
al., 2005a, 2005b; Ahn et al., 2006�

m = �x y y

y z w

y w z
� , �7�

with complex coefficients x, y, z, and w. This matrix is
the most general one that is symmetric under 2-3 �or

-�� exchange or

m� = A23m�A23, �8�

where A23 is given by

A23 = �1 0 0

0 0 1

0 1 0
� . �9�

The solar mixing angle �12 is given by

sin2 2�12 =
8�x*y + y*�w + z��2

8�x*y + y*�w + z��2 + ��w + z�2 − �x�2�2

=
8y2

�x − w − z�2 + 8y2 , �10�

where the second equality applies to real parameters.
Since �13=0 there is no CP violation in neutrino oscilla-
tions, and the only physical phases are the Majorana
ones, accounted for by the general case of complex pa-
rameters. Here we restrict our consideration to real pa-
rameters. There are four of them in Eq. �7� which corre-
spond to the three mass eigenvalues and one remaining
mixing angle �12. Models with 
-� symmetry have been
extensively studied �Fukuyama and Nishiura, 1997; Mo-
hapatra and Nussinov, 1999; Lam, 2001; Ma and Raidal,
2001; Ghosal, 2003; Kitabayashi and Yasue, 2003, 2005;
de Gouvêa, 2004; Grimus and Lavoura, 2004; Koide,
2004; Grimus et al., 2005; Mohapatra and Nasri, 2005;
Mohapatra and Rodejohann, 2005; Mohapatra et al.,
2005a, 2005b; Ahn et al., 2006; Ge et al., 2010�.

The particularly important case of TB mixing is ob-
tained when sin2 2�12=8/9 or x+y=w+z.3 In this case,
the matrix m� takes the form

m� = �x y y

y x + v y − v

y y − v x + v
� . �11�

In fact, in this case U=UTB is given by �Harrison and
Scott, 2002, 2003, 2004; Harrison et al., 2002�

UTB =��
2
3

1
�3

0

−
1
�6

1
�3

−
1
�2

−
1
�6

1
�3

1
�2

� , �12�

and from Eq. �5� one obtains

m� = m1�1�1
T + m2�2�2

T + m3�3�3
T, �13�

where

�1
T =

1
�6

�2,− 1,− 1�, �2
T =

1
�3

�1,1,1� ,

�14�

�3
T =

1
�2

�0,− 1,1�

are the respective columns of UTB and mi are the neu-
trino mass eigenvalues �m1=x−y, m2=x+2y, and m3=x
−y+2v�. It is easy to see that the TB mass matrix in Eqs.
�13� and �14� is indeed of the form in Eq. �11�. All pat-
terns for the neutrino spectrum are, in principle, pos-
sible. For a hierarchical spectrum m3�m2�m1, m3

2

��matm
2 , m2

2 /m3
2��msol

2 /�matm
2 , and m1 could be negli-

gible. However, degenerate masses and inverse hierar-
chy can also be reproduced: for example, by taking m3
=−m2=m1 we have a degenerate model, while for m1
=−m2 and m3=0 an inverse hierarchy case is realized
�stability under renormalization group running �for a re-
view see, for example, Chankowski and Pokorski �2002��
strongly prefers opposite signs for the first and second
eigenvalues which are related to solar oscillations and
have the smallest mass squared splitting�.

Note that the mass matrix for TB mixing, in the basis
where charged leptons are diagonal, as given in Eq. �11�,
can be specified as the most general matrix which is in-
variant under 
-� �or 2-3� symmetry �see Eqs. �8� and
�9�� and, in addition, under the action of a unitary sym-
metric matrix STB �actually STB

2 =1 and �STB,A23�=0�,

m� = STBm�STB, m� = A23m�A23, �15�

where STB is given by

3The other solution x−y=w+z gives rise to TB mixing in
another phase convention and is physically equivalent to x+y
=w+z.

2706 Guido Altarelli and Ferruccio Feruglio: Discrete flavor symmetries and models of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



STB =
1
3�− 1 2 2

2 − 1 2

2 2 − 1
� . �16�

As a last example consider the case of BM where, in
addition to �13=0 and �23 maximal, one also has
sin2 2�12=1. The BM mixing matrix is given by

UBM =�
1
�2

−
1
�2

0

1
2

1
2

−
1
�2

1
2

1
2

1
�2

� . �17�

In the basis where charged-lepton masses are diagonal,
from Eq. �5� we derive the effective neutrino mass ma-
trix in the BM case,

m� = m1�1�1
T + m2�2�2

T + m3�3�3
T, �18�

where

�1
T =

1
2

��2,1,1�, �2
T =

1
2

�− �2,1,1� ,

�19�

�3
T =

1
�2

�0,− 1,1� .

As we can see the most general mass matrix leading to
BM mixing is of the form

m� = �x y y

y z x − z

y x − z z
� . �20�

The resulting matrix can be completely characterized by
the requirement of being invariant under the action of
A23 and also of the unitary, real, symmetric matrix SBM

�satisfying SBM
2 =1 and �SBM,A23�=0�,

m� = SBMm�SBM, m� = A23m�A23, �21�

with SBM given by

SBM =�
0 −

1
�2

−
1
�2

−
1
�2

1
2

−
1
2

−
1
�2

−
1
2

1
2

� . �22�

The m� mass matrices of the previous examples were
all derived in the basis where charged leptons are diag-
onal. It is useful to consider the product m2=me

†me,
where me is the charged-lepton mass matrix �defined as

�̄Rme�L�, because this product transforms as m�2

=Ue
†m2Ue, with Ue as the unitary matrix that rotates the

left-handed �LH� charged-lepton fields. The most gen-
eral diagonal m2 is invariant under a diagonal phase ma-
trix with three different phase factors:

me
†me = T†me

†meT �23�

and, conversely, a matrix me
†me satisfying the above re-

quirement is diagonal. If Tn=1, the matrix T generates a
cyclic group Zn. In the simplest case n=3 and we get Z3
but n�3 is equally possible. Examples are

TTB = �1 0 0

0 � 0

0 0 �2� , �24�

where �3=1, so that TTB
3 =1 or

TBM = �− 1 0 0

0 − i 0

0 0 i
� , �25�

with TBM
4 =1.

We are now in a position to explain the role of finite
groups and to formulate the general strategy to obtain
one of the previous special mass matrices, for example,
that of TB mixing. We must find a group Gf which, for
simplicity, must be as small as possible but large enough
to contain the S and T transformations. A limited num-
ber of products of S and T close a finite group Gf. Hence
the group Gf contains the subgroups GS and GT gener-
ated by monomials in S and T, respectively. We assume
that the theory is invariant under the spontaneously bro-
ken symmetry described by Gf. Then we must arrange a
breaking of Gf such that, in leading order, Gf is broken
down to GS in the neutrino mass sector and down to GT
in the charged-lepton mass sector. In a good model this
step must be realized in a natural way as a consequence
of the stated basic principles and not put in by hand. The
symmetry under A23 in some cases is also part of Gf �this
is the case of S4� and then must be preserved in the
neutrino sector along with S by the Gf breaking or it
could arise as a consequence of a special feature of the
Gf breaking �for example, in A4 it is obtained by allow-
ing only some transformation properties for the flavons
with nonvanishing vacuum expectation values �VEVs��.
The explicit example of A4 is discussed in Sec. III. Note
that, along the same line, a model with 
-� symmetry
can be realized in terms of group S3 generated by prod-
ucts of A23 and T �see, for example, Feruglio and Lin
�2008��.

III. THE A4 GROUP

A4 is the group of even permutations of four objects.
It has 4! /2=12 elements. Geometrically, it can be seen as
the invariance group of a tetrahedron �the odd permu-
tations, for example, the exchange of two vertices, can-
not be obtained by moving a rigid solid�. We denote a
generic permutation �1,2,3,4�→ �n1 ,n2 ,n3 ,n4� simply by

2707Guido Altarelli and Ferruccio Feruglio: Discrete flavor symmetries and models of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



�n1n2n3n4�. A4 can be generated by two basic permuta-
tions S and T given by S= �4321� and T= �2314�. One
checks immediately that

S2 = T3 = �ST�3 = 1. �26�

This is called a “presentation” of the group. The 12 even
permutations belong to four equivalence classes �h and k
belong to the same class if there is a g in the group such
that ghg−1=k� and are generated from S and T as fol-
lows:

C1:I = �1234� ,

C2:T = �2314�, ST = �4132� ,

TS = �3241�, STS = �1423� ,
�27�

C3:T2 = �3124�, ST2 = �4213� ,

T2S = �2431�, TST = �1342� ,

C4:S = �4321�, T2ST = �3412�, TST2 = �2143� .

Note that, except for the identity I which always forms
an equivalence class in itself, the other classes are ac-
cording to the powers of T �in C4 S could as well be seen
as ST3�.

The characters of a group �g
R are defined, for each

element g, as the trace of the matrix that maps the ele-
ment in a given representation R. From the invariance
of traces under similarity transformations it follows that
equivalent representations have the same characters and
that characters have the same value for all elements in
an equivalence class. Characters satisfy �g�g

R�g
S�=N�RS,

where N is the number of transformations in the group
�N=12 in A4�. For each element h, the character of h in
a direct product of representations is also the product of
the characters, �h

R�S=�h
R�h

S, and is also equal to the sum
of the characters in each representation that appears in
the decomposition of R � S. In a finite group the squared
dimensions of the inequivalent irreducible representa-
tions add up to N. The character table of A4 is given in
Table III. From this table one derives that A4 has four
inequivalent representations: three of dimension 1, 1�,
and 1�, and one of dimension 3.

It is immediate to see that the one-dimensional uni-
tary representations are obtained by

1S = 1T = 1,

1�S = 1T = ei2�/3 
 � , �28�

1�S = 1T = ei4�/3 
 �2.

Note that �=−1/2+ i�3/2 is the cubic root of 1 and sat-
isfies �2=��, 1+�+�2=0.

The three-dimensional unitary representation, on a
basis where the element S=S� is diagonal, is built up
from

S� = �1 0 0

0 − 1 0

0 0 − 1
�, T� = �0 1 0

0 0 1

1 0 0
� . �29�

The multiplication rules are as follows: the product of
two 3’s gives 3�3=1+1�+1�+3+3 and 1��1�=1�, 1�
�1�=1, 1��1�=1�, etc. If 3��a1 ,a2 ,a3� is a triplet trans-
forming by the matrices in Eq. �29�, we have under S�,
S��a1 ,a2 ,a3�t= �a1 ,−a2 ,−a3�t �here the upper index t indi-
cates transposition�, and under T�, T��a1 ,a2 ,a3�t

= �a2 ,a3 ,a1�t. Then, from two such triplets, 3a
��a1 ,a2 ,a3� and 3b��b1 ,b2 ,b3�, the irreducible repre-
sentations obtained from their product are

1 = a1b1 + a2b2 + a3b3, �30�

1� = a1b1 + �2a2b2 + �a3b3, �31�

1� = a1b1 + �a2b2 + �2a3b3, �32�

3 � �a2b3,a3b1,a1b2� , �33�

3 � �a3b2,a1b3,a2b1� . �34�

In fact, take, for example, the expression for 1�=a1b1
+�a2b2+�2a3b3. Under S� it is invariant and under T� it
goes into a2b2+�a3b3+�2a1b1=�2�a1b1+�a2b2+�2a3b3�
which is exactly the transformation corresponding to 1�.

In Eq. �29� we have the representation 3 on a basis
where S is diagonal. We shall see that for our purposes it
is convenient to go to a basis where instead it is T that is
diagonal. This is obtained through the unitary transfor-
mations,

T = VT�V† = �1 0 0

0 � 0

0 0 �2� , �35�

S = VS�V† =
1
3�− 1 2 2

2 − 1 2

2 2 − 1
� , �36�

where

TABLE III. Characters of A4.

Class �1 �1� �1� �3

C1 1 1 1 3
C2 1 � �2 0
C3 1 �2 � 0
C4 1 1 1 −1
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V =
1
�3�1 1 1

1 �2 �

1 � �2� . �37�

The matrix V is special in that it is a 3�3 unitary matrix
with all entries of unit absolute value. It is interesting
that this matrix was proposed earlier as a possible mix-
ing matrix for neutrinos �Cabibbo, 1978; Wolfenstein,
1978�. We shall see in the following that in the T diago-
nal basis the charged-lepton mass matrix �to be precise
the matrix me

†me� is diagonal. Note that the matrices
�S ,T� of Eqs. �35� and �36� coincide with the matrices
�STB,TTB� of Sec. II.

In this basis the product rules of two triplets,
��1 ,�2 ,�3� and ��1 ,�2 ,�3� of A4, according to the multi-
plication rule 3�3=1+1�+1�+3+3 are different than in
the S diagonal basis �because for the Majorana mass ma-
trices the relevant scalar product is �ab� and not �a†b��
and are given by

�1�1 + �2�3 + �3�2 � 1,

�3�3 + �1�2 + �2�1 � 1�,
�38�

�2�2 + �3�1 + �1�3 � 1�,

�2�1�1 − �2�3 − �3�2

2�3�3 − �1�2 − �2�1

2�2�2 − �1�3 − �3�1
� � 3S, ��2�3 − �3�2

�1�2 − �2�1

�3�1 − �1�3
� � 3A.

In the following, we work in the T diagonal basis un-
less otherwise stated. In this basis the 12 matrices of the
three-dimensional representation of A4 are given by

C1:1 = �1 0 0

0 1 0

0 0 1
� ,

C2:T = �1 0 0

0 � 0

0 0 �2�, ST =
1
3�− 1 2� 2�2

2 − � 2�2

2 2� − �2� ,

TS =
1
3�− 1 2 2

2� − � 2�

2�2 2�2 − �2� ,

STS =
1
3�− 1 2�2 2�

2�2 − � 2

2� 2 − �2� ,

C3:T2 = �1 0 0

0 �2 0

0 0 �
�, ST2 =

1
3�− 1 2�2 2�

2 − �2 2�

2 2�2 − �
� ,

T2S =
1
3�− 1 2 2

2�2 − �2 2�2

2� 2� − �
� ,

TST =
1
3�− 1 2� 2�2

2� − �2 2

2�2 2 − �
� ,

C4:S =
1
3�− 1 2 2

2 − 1 2

2 2 − 1
� ,

T2ST =
1
3�− 1 2� 2�2

2�2 − 1 2�

2� 2�2 − 1
� ,

TST2 =
1
3�− 1 2�2 2�

2� − 1 2�2

2�2 2� − 1
� .

We can now see why A4 works for TB mixing. In Sec.
II we mentioned that the most general mass matrix for
TB mixing in Eq. �11�, in the basis where charged lep-
tons are diagonal, can be specified as one which is invari-
ant under the 2-3 �or 
-�� symmetry and under the S
unitary transformation, as stated in Eq. �15� �note that
STB in Eqs. �15� and �16� coincides with S in Eq. �36��.
This observation plays a key role in leading to A4 as a
candidate group for TB mixing because S is a matrix of
A4. Instead the matrix A23 is not an element of A4 �be-
cause the 2-3 exchange is an odd permutation�. We shall
see that in A4 models the 2-3 symmetry is maintained by
imposing that there are no flavons transforming as 1� or
1� that break A4 with two different VEVs �in particular,
one can assume that there are no flavons in the model
transforming as 1� or 1��. It is also clear that a generic
diagonal charged-lepton matrix me

†me is characterized by
the invariance under T or T†me

†meT=me
†me.

The group A4 has two obvious subgroups: GS, which is
a reflection subgroup generated by S, and GT, which is
the group generated by T, isomorphic to Z3. If the flavor
symmetry associated to A4 is broken by the VEV of a
triplet �= ��1 ,�2 ,�3� of scalar fields, there are two inter-
esting breaking patterns. The VEV


�� = �vS,vS,vS� �39�

breaks A4 down to GS, while


�� = �vT,0,0� �40�

breaks A4 down to GT. As we will see, GS and GT are
the relevant low-energy symmetries of the neutrino and
the charged-lepton sectors, respectively. Indeed, we have
already seen that the TB mass matrix is invariant under
GS and a diagonal charged-lepton mass me

†me is invari-
ant under GT.

2709Guido Altarelli and Ferruccio Feruglio: Discrete flavor symmetries and models of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



IV. APPLYING A4 TO LEPTON MASSES AND MIXINGS

In the lepton sector a typical A4 model works as fol-
lows �Altarelli and Feruglio, 2006�. One assigns leptons
to the four inequivalent representations of A4: LH lep-
ton doublets l transform as a triplet 3, while the RH
charged leptons ec, 
c, and �c transform as 1, 1�, and 1�,
respectively. Here we consider a seesaw realization, so
we also introduce conjugate neutrino fields �c transform-
ing as a triplet of A4. We adopt a supersymmetric
�SUSY� context also to make contact with grand unifi-
cation �flavor symmetries are supposed to act near the
grand unified theory �GUT� scale�. In fact, as is well
known, SUSY is important in GUTs for offering a solu-
tion to the hierarchy problem, for improving coupling
unification, and for making the theory compatible with
bounds on proton decay. However, in models of lepton
mixing SUSY also helps in obtaining the vacuum align-
ment because the SUSY constraints are very strong and
limit the form of the superpotential. Thus, SUSY is not
necessary but it is a plausible and useful ingredient. The
flavor symmetry is broken by two triplets �S and �T and
by one or more singlets �. All these fields are invariant
under the standard model �SM� gauge symmetry. Two
Higgs doublets hu,d, invariant under A4, are also intro-
duced. One can obtain the observed hierarchy among
me, m
, and m� by introducing an additional U�1�FN fla-
vor symmetry �Froggatt and Nielsen, 1979� under which
only the RH lepton sector is charged �recently some
models were proposed with a different VEV alignment
such that the charged-lepton hierarchies are obtained
without introducing a U�1� symmetry �Altarelli and
Meloni, 2009; Lin, 2009a, 2009b��. We recall that U�1�FN
is a simplest flavor symmetry where particles in different
generations are assigned, in general, different values of
an Abelian charge. Also Higgs fields may get a nonzero
charge. When the symmetry is spontaneously broken the
entries of mass matrices are suppressed if there is a
charge mismatch and more so if the corresponding mis-
match is larger. We assign the Froggatt-Nielsen �FN�
charges 0, q, and 2q to �c, 
c, and ec, respectively. There
is some freedom in the choice of q. Here we take q=2.
By assuming that a flavon �, carrying a negative unit of
FN charge, acquires a VEV 
�� /�
	�1, the Yukawa
couplings become field dependent quantities ye,
,�
=ye,
,���� and we have

y� 	 O�1�, y
 	 O�	2�, ye 	 O�	4� . �41�

Had we chosen q=1, we would have needed 
�� /� of
order 	2 to reproduce the above result. The superpoten-
tial term for lepton masses wl is given by

wl = yee
c��Tl� + y

c��Tl�� + y��

c��Tl�� + y��cl�

+ �xA� + x̃A�̃���c�c� + xB��S�c�c� + H.c. + ¯ ,

�42�

with dots denoting higher-dimensional operators that
lead to corrections to the LO approximation. In our no-
tation, the product of two triplets �33� transforms as 1,
�33�� transforms as 1�, and �33�� transforms as 1�. To
keep our formulas compact, we omit writing the Higgs
and flavon fields hu,d, �, and the cutoff scale �. For in-
stance, yee

c��Tl� stands for yee
c��Tl�hd�4 /�5. The param-

eters of the superpotential wl are complex, in particular
those responsible for the heavy neutrino Majorana
masses, xA,B. Some terms allowed by the A4 symmetry,
such as the terms obtained by the exchange �T↔�S �or
the term ��c�c��, are missing in wl. Their absence is cru-
cial and in each version of A4 models is motivated by
additional symmetries. �Altarelli and Feruglio �2005� dis-
cussed a natural solution of this problem based on a
formulation with extra dimensions; for a similar ap-
proach see also Kadosh and Pallante �2010�.� In the
present version the additional symmetry is Z3. A U�1�R
symmetry related to R parity and the presence of driving
fields in the flavon superpotential are common features
of supersymmetric formulations. Eventually, after the in-
clusion of N=1 SUSY breaking effects, the U�1�R sym-
metry will be broken at the low-energy scale mSUSY
down to the discrete R parity. Supersymmetry also helps
producing and maintaining the hierarchy 
hu,d�=vu,d
��, where � is the cutoff scale of the theory. The fields
in the model and their classification under the symmetry
are summarized in Table IV.

In this setup it can be shown that the fields �T, �S, and
� develop a VEV along the directions


�T� = �vT,0,0� ,


�S� = �vS,vS,vS� , �43�


�� = u .

A crucial part of all serious A4 models is the dynamical
generation of this alignment in a natural way. See Al-
tarelli and Feruglio �2006� for a proof that the above
alignment naturally follows from the most general LO
superpotential implied by the symmetries of the model.
As mentioned, the group A4 has two obvious subgroups:
GS, which is a reflection subgroup generated by S, and
GT, which is the group generated by T, isomorphic to
Z3. In the basis where S and T are given by Eq. �16�, the

TABLE IV. Transformation properties of all the fields.

l ec 
c �c �c hu,d � �T �S � �0
T �0

S �0

A4 3 1 1� 1� 3 1 1 3 3 1 3 3 1
Z3 � �2 �2 �2 �2 1 1 1 �2 �2 1 �2 �2

U�1�FN 0 4 2 0 0 0 −1 0 0 0 0 0 0
U�1�R 1 1 1 1 1 0 0 0 0 0 2 2 2

2710 Guido Altarelli and Ferruccio Feruglio: Discrete flavor symmetries and models of …

Rev. Mod. Phys., Vol. 82, No. 3, July–September 2010



VEV 
�T�= �vT ,0 ,0� breaks A4 down to GT, while 
�S�
= �vS ,vS ,vS� breaks A4 down to GS.

If the alignment in Eq. �43� is realized, at the leading
order of the 1/� expansion, the mass matrices ml and m�

for charged leptons and neutrinos correspond to TB
mixing. The charged-lepton mass matrix is diagonal,

ml = vd
vT

� �ye 0 0

0 y
 0

0 0 y�

� . �44�

The charged fermion masses are given by

me = yevd
vT

�
, m
 = y
vd

vT

�
, m� = y�vd

vT

�
, �45�

where the suppression coming from the breaking of
U�1�FN is understood. For example, ye stands for
ye�

4 /�4. In the neutrino sector, after electroweak and A4
symmetry breaking we have the Dirac and Majorana
masses,

m�
D = �1 0 0

0 0 1

0 1 0
�yvu,

�46�

M = �A + 2B/3 − B/3 − B/3

− B/3 2B/3 A − B/3

− B/3 A − B/3 2B/3
�u ,

where

A 
 2xA, B 
 2xB
vS

u
. �47�

The eigenvalues of M are

M1 = �A + B�u, M2 = Au, M3 = �− A + B�u . �48�

The mass matrix for light neutrinos is m�

= �m�
D�TM−1m�

D with eigenvalues

m1 =
y2vu

2

M1
, m2 =

y2vu
2

M2
, m3 =

y2vu
2

M3
. �49�

The mixing matrix is UTB �Eq. �12��. Both normal and
inverted hierarchies in the neutrino mass spectrum can
be realized. It is interesting that A4 models with the see-
saw mechanism typically lead to a light neutrino spec-
trum which satisfies the sum rule �among complex
masses�

1

m3
=

1

m1
−

2

m2
. �50�

The phases of the complex parameters A and B do not
produce any CP violation in neutrino oscillations, since
�13=0, but are quite important to make the above sum
rule compatible with the present data on neutrino
masses. A detailed discussion of a spectrum of this type
has been given by Altarelli and Feruglio �2006� and Al-
tarelli and Meloni �2009�.

Both types of ordering, normal and inverted, are al-
lowed and the above sum rule gives rise to bounds on
the lightest neutrino mass. For normal ordering we have

m1 ���msun
2

3
�1 −

4�3
9

r + ¯ � 	 0.004 eV,

�51�

m1 ���msun
2

3
�1 +

4�3
9

r + ¯ � 	 0.006 eV,

and for the inverted ordering

m3 ���matm
2

8
�1 −

1
6

r2 + ¯ � 	 0.017 eV, �52�

where the ellipses represent terms with higher powers of
r. Note that for normal ordering the neutrino mass spec-
trum is essentially determined: m1	0.005 eV, m1
	0.01 eV, and m3	0.05 eV. The possible values of �mee�
are also restricted. For normal hierarchy we have

�mee� 	
4

3�3
�msun

2 	 0.007 eV, �53�

while for inverted hierarchy

�mee� ���matm
2

8
	 0.017 eV. �54�

In a completely general framework, without the restric-
tions imposed by the flavor symmetry, �mee� could vanish
in the case of normal hierarchy. In this model �mee� is
always different from zero, though its value for normal
hierarchy is probably too small to be detected in the
next generation of 0��� experiments.

Note that in the charged-lepton sector the flavor sym-
metry A4 is broken by 
�T� down to GT. Actually the
above mass terms for charged leptons are the most gen-
eral allowed by the symmetry GT. At leading order in
1/�, charged-lepton masses are diagonal simply because
there is a low-energy GT symmetry. In the neutrino sec-
tor A4 is broken down to GS, though neutrino masses in
this model are not the most general ones allowed by GS.
The additional property which is needed, the invariance
under A
�, is obtained by stipulating that there are no
A4 breaking flavons transforming as 1� and 1�. In fact,
from Eq. �38�, we see that the expressions for �33�� and
�33�� are not 2-3 symmetric.

At the next level of approximation each term of the
superpotential is corrected by operators of higher di-
mension whose contributions are suppressed by at least
one power of VEVs in units of �. The corrections to the
relevant part of the superpotential determine small de-
viations from the LO VEV alignment configuration. The
NLO corrections to mass and mixing matrices are ob-
tained by inserting the corrected VEV alignment in the
LO operators plus the contribution of the new operators
evaluated with the unperturbed VEVs. The final result is
�Altarelli and Feruglio, 2006� that, when the NLO cor-
rections are included, TB mixing is violated by small
terms of the same order for all mixing angles,
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sin2 �12 = 1
3 + O��� ,

sin2 �23 = 1
2 + O��� , �55�

sin �13 = O��� ,

where � is of order of the typical VEV in units of �. The
fact that TB mixing is well satisfied by the data sets the
restriction ��O�	C

2 �. From the requirement that the
Yukawa coupling y� remains in the perturbative regime,
we also get a lower bound on � of about 0.01, the exact
value depending on tan �=vu /vd and on the largest al-
lowed �y��. Thus, we have

0.01 � � � 0.05. �56�

From the seesaw relations in Eq. �49�, assuming a cou-
pling y of order 1, we see that the heavy RH neutrino
masses are all of order 1015 GeV, close to the GUT
scale. The cutoff of the theory can be estimated form
Eq. �56� to be close to 1017 GeV.

The above results in Eqs. �44�–�54� on the lepton mass
matrices and the neutrino spectrum refer to the LO ap-
proximation. Relations among neutrino masses can be
affected by NLO corrections but, for � varying in the
range of Eq. �56�, the bounds �51� and �52� do not ap-
preciably change �see, for example, Barry and Rodejo-
hann �2010� for a numerical study of the deviations in-
duced by vacuum misalignment�. Also corrections
induced by the renormalization group evolution of the
parameters can modify the above predictions but only in
the case of sufficiently degenerate mass levels m1 and m2
with equal phases, which occurs for inverted mass order-
ing and far from the lower bound �52� �Lin et al., 2010�.
The expansion parameter � directly controls other ob-
servables, such as the CP asymmetries of leptogenesis
and the rates of lepton flavor violating transitions. This
provides an interesting link between the physics in the
early Universe relevant for leptogenesis and the low-
energy physics accessible in current experiments. We
discuss the interplay between discrete flavor symmetries
and leptogenesis in Sec. X.

V. POSSIBLE ORIGIN OF A4

There is an interesting relation �Altarelli and Fer-
uglio, 2006� between the A4 model considered so far and
the modular group. This relation could possibly be rel-
evant to understand the origin of the A4 symmetry from
a more fundamental layer of the theory. The modular
group � is the group of linear fractional transformations
acting on a complex variable z,

z →
az + b

cz + d
, ad − bc = 1, �57�

where a, b, c, and d are integers. There are infinite ele-
ments in �, but all of them can be generated by the two
transformations,

s:z → −
1

z
, t:z → z + 1. �58�

The transformations s and t in Eq. �58� satisfy the rela-
tions

s2 = �st�3 = 1, �59�

and, conversely, these relations provide an abstract char-
acterization of the modular group. Since relation �26� is
a particular case of more general constraint �59�, it is
clear that A4 is a very small subgroup of the modular
group and that the A4 representations discussed above
are also representations of the modular group. In string
theory the transformations �58� operate in many differ-
ent contexts. For instance, the role of the complex vari-
able z can be played by a field, whose VEV can be re-
lated to a physical quantity such as a compactification
radius or a coupling constant. In that case s in Eq. �58�
represents a duality transformation and t in Eq. �58� rep-
resents the transformation associated to an “axionic”
symmetry.

A different way to understand the dynamical origin of
A4 was recently presented by Altarelli et al. �2007�
where it is shown that the A4 symmetry can be obtained
by orbifolding starting from a model in six dimensions.
In this approach A4 appears as the remnant of the re-
duction from six-dimensional �6D� to four-dimensional
�4D� space-time symmetry induced by the special orbi-
folding adopted. This approach suggests a deep relation
between flavor symmetry in four dimensions and space-
time symmetry in extra dimensions.

The orbifolding is defined as follows. We consider a
quantum field theory in six dimensions, with two extra
dimensions compactified on an orbifold T2 /Z2. We de-
note by z=x5+ ix6 the complex coordinate describing the
extra space. The torus T2 is defined by identifying in the
complex plane the points related by

z → z + 1, z → z + �, � = ei��/3�, �60�

where our length unit 2�R has been set to 1 for the time
being. The parity Z2 is defined by

z → − z �61�

and the orbifold T2 /Z2 can be represented by the fun-
damental region given by the triangle with vertices 0, 1,
and � �see Fig. 3�. The orbifold has four fixed points,
�z1 ,z2 ,z3 ,z4�= „1/2 , �1+�� /2 ,� /2 ,0…. The fixed point z4
is also represented by the vertices 1 and �. In the orbi-
fold, the segments labeled by a in Fig. 1, �0,1 /2� and
�1,1 /2�, are identified and similarly for those labeled by
b, „1, �1+�� /2… and „� , �1+�� /2…, and those labeled by c,
�0,� /2� and �� ,� /2�. Therefore, the orbifold is a regular
tetrahedron with vertices at the four fixed points.

The symmetry of the uncompactified 6D space-time is
broken by compactification. Here we assume that, be-
fore compactification, the space-time symmetry coin-
cides with the product of 6D translations and 6D proper
Lorentz transformations. The compactification breaks
part of this symmetry. However, due to the special ge-
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ometry of our orbifold, a discrete subgroup of rotations
and translations in the extra space is left unbroken. This
group can be generated by two transformations,

S:z → z + 1
2 , T:z → �z � 
 �2. �62�

Indeed, S and T induce even permutations of the four
fixed points,

S:�z1,z2,z3,z4� → �z4,z3,z2,z1� ,
�63�

T:�z1,z2,z3,z4� → �z2,z3,z1,z4� ,

thus generating the group A4. From the previous equa-
tions we immediately verify that S and T satisfy the char-
acteristic relations obeyed by the generators of A4: S2

=T3= �ST�3=1. These relations are actually satisfied not
only at the fixed points but on the whole orbifold, as can
be easily checked from the general definitions of S and T
in Eq. �62�, with the help of the orbifold defining rules in
Eqs. �60� and �61�.

We can exploit this particular geometry of the internal
space to build a model with A4 flavor symmetry. There
are 4D branes at the four fixed points of the orbifolding
and the tetrahedral symmetry of A4 connects these
branes. The standard model fields have components on
the fixed point branes, while the scalar fields necessary
for the A4 breaking are in the bulk. Each brane field,
either a triplet or a singlet, has components on all of the
four fixed points �in particular, all components are equal
for a singlet� but the interactions are local; i.e., all verti-
ces involve products of field components at the same
space-time point. In the low-energy limit this model co-
incides with the one illustrated in Sec. IV. Unfortunately
in such a limit the 6D construction does not provide
additional constraints or predictions.

This construction can be embedded in a SU�5� GUT
�Burrows and King, 2010�. Other discrete groups can

arise from the compactification of two extra dimensions
on orbifolds and the possibilities have been classified by
Adulpravitchai et al. �2009a� within a field theory ap-
proach. In string theory the flavor symmetry can be
larger than the isometry of the compact space. For in-
stance, in heterotic orbifold models the orbifold geom-
etry combines with the space group selection rules of the
string, as shown by Kobayashi et al. �2007�. Discrete fla-
vor symmetries from magnetized or intersecting D
branes are discussed in Abe et al. �2009�. Discrete sym-
metries can also arise from the spontaneous breaking of
continuous ones. Such a possibility has been discussed
by Adulpravitchai et al. �2009b� and Berger and Gross-
man �2010�.

VI. ALTERNATIVE ROUTES TO TB MIXING

While A4 is the minimal flavor group leading to TB
mixing, alternative flavor groups have been studied and
can lead to interesting variants with some specific fea-
tures.

Recently, Lam �2008�, claimed that, in order to obtain
the TB mixing “without fine tuning,” the finite group
must be S4 or a larger group containing S4. We believe
this claim is not well grounded being based on an ab-
stract mathematical criterium for a natural model �see
also Grimus et al. �2009��. For us a physical field theory
model is natural if the interesting results are obtained
from the most general Lagrangian compatible with the
stated symmetry and the specified representation con-
tent for the flavons. For example, we obtain from A4
�which is a subgroup of S4� a natural, in our sense, model
for the TB mixing by simply not including symmetry
breaking flavons transforming like the 1� and the 1� rep-
resentations of A4. This limitation on the transformation
properties of the flavons is not allowed by the rules
specified in Lam �2008� which demand that the symme-
try breaking is induced by all possible kinds of flavons
�note that, according to this criterium, the SM of elec-
troweak interactions would not be natural because only
the Higgs doublets are introduced�. Rather for natural-
ness we also require that additional physical properties,
such as the VEV alignment or the hierarchy of charged-
lepton masses also follow from the assumed symmetry
and are not obtained by fine-tuning parameters: for this
actually A4 can be more effective than S4 because it pos-
sesses three different singlet representations, 1, 1�, and
1�.

Models of neutrino mixing based on S4 have, in fact,
been studied �Mohapatra et al., 2004; Cai and Yu, 2006;
Hagedorn et al., 2006, 2010; Ma, 2006a; Bazzocchi and
Morisi, 2009; Bazzocchi et al., 2009a, 2009b; Dutta et al.,
2009, 2010; Ishimori et al., 2009, 2010; Ding, 2010;
Meloni, 2010; Morisi and Peinado, 2010�. The group of
the permutations of four objects S4 has 24 elements and
5 equivalence classes �the character table is given in
Table V� that correspond to five inequivalent irreducible
representations: two singlets, one doublet, two triplets:
11, 12, 2, 31, and 32 �see Table II�. Note that the squares

FIG. 3. Orbifold T2 /Z2. The regions with the same numbers
are identified with each other. The four triangles bounded by
solid lines form the fundamental region, where the edges with
the same letters are also identified. The orbifold T2 /Z2 is ex-
actly a regular tetrahedron with six edges �a, b, c, d, e, and f�
and four vertices �z1, z2, z3, and z4�, corresponding to the four
fixed points of the orbifold.
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of the dimensions of all these representations add up to
24.

For models of TB mixing, one starts from the S4 pre-
sentation A3=B4= �BA2�2=1 and identifies, up to a simi-
larity transformation, B2=S and A=T, where S and T
are given in Eqs. �16� and �24�. In this presentation one
obtains a realization of the three-dimensional represen-
tation of S4 where S and A23 matrices in Eq. �15�, leave
the TB form of m� invariant in Eq. �11� as well as the
matrix T in Eq. �24� of invariance for me

†me, all explicitly
appear �Bazzocchi et al., 2009a�. In S4 the 1� and 1� of A4
are collected in a doublet. When the VEV of the doublet
flavon is aligned along the GS preserving direction the
resulting couplings are 2-3 symmetric as needed. In A4
the 2-3 symmetry is only achieved if the 1� and 1� VEVs
are identical �which is the S4 prediction�. As discussed
by Bazzocchi et al. �2009a�, in the leptonic sector the
main difference between A4 and S4 is that, while in the
typical versions of A4 the most general neutrino mass
matrix depends on two complex parameters �related to
the couplings of the singlet and triplet flavons�, in S4 it
depends on three complex parameters �because the dou-
blet is present in addition to singlet and triplet flavons�.

Other flavor groups have been considered for models
of TB mixing. Some of them include S4 as a subgroup,
such as PSL2�7� �the smallest group with complex triplet
representations� �Luhn et al., 2007a; King and Luhn,
2009a, 2009b�, while others, such as ��27� �which is a
discrete subgroup of SU�3�� �de Medeiros Varzielas et
al., 2007a; Luhn et al., 2007b; Grimus and Lavoura, 2008;
Ma, 2008; Bazzocchi and de Medeiros Varzielas, 2009� or
Z7’Z3 �Luhn et al., 2007c�, have no direct relation to S4
�King, 2010�. In Sec. VIII we consider S4 again in the
different contexts of BM with large corrections from the
lepton sector.

A different approach to TB mixing has been proposed
and developed in different versions by King and collabo-
rators over the past few years �King, 2005, 2010; King
and Malinsky, 2006; de Medeiros Varzielas and Ross,
2006; de Medeiros Varzielas et al., 2007b�. The starting
point is the decomposition of the neutrino mass matrix
given in Eqs. �13� and �14� corresponding to exact TB
mixing in the diagonal charged-lepton basis,

m� = m1�1�1
T + m2�2�2

T + m3�3�3
T, �64�

where �1
T= �1/�6��2,−1,−1�, �2

T= �1/�3��1,1 ,1�, and
�3

T= �1/�2��0,−1,1� are the respective columns of UTB
and mi are the neutrino mass eigenvalues. Such decom-

position is purely kinematical and does not possess any
dynamical or symmetry content. In the King models the
idea is that the three columns of UTB �i are promoted to
flavon fields whose VEVs break the family symmetry,
with the particular vacuum alignments along the direc-
tions �i. Equation �64� directly arises in the seesaw
mechanism m�=mD

T M−1mD written in the diagonal RH
neutrino mass basis M=diag�M1 ,M2 ,M3�, when the
Dirac mass matrix is given by mD

T = �v1�1 ,v2�2 ,v3�3�,
where vi are mass parameters describing the size of the
VEVs. In this way, for each RH neutrino eigenvalue Mi
a particular light neutrino mass mi is associated. In the
case of a strong neutrino hierarchy this idea can be com-
bined with the framework of “sequential dominance,”
where the lightest RH neutrino with its symmetry prop-
erties fixes the heaviest light neutrino and so on. For no
pronounced hierarchy the correspondence between Mi
and mi can still hold and one talks of “form dominance”
�Chen and King, 2009�. In these models the underlying
family symmetry of the Lagrangian Gf is completely bro-
ken by the combined action of the �i VEVs, and the
flavor symmetry of the neutrino mass matrix emerges
entirely as an accidental residual symmetry of the qua-
dratic form of Eq. �64� �King, 2010�. The symmetry Gf
plays a less direct role and the name “indirect models”
has been used.

VII. EXTENSION TO QUARKS AND GUTS

Much attention has been devoted to the question
whether models with TB mixing in the neutrino sector
can be suitably extended to also successfully describe
the observed pattern of quark mixings and masses and
whether this more complete framework can be made
compatible with �supersymmetric� SU�5� or SO�10�
grand unification. For models with approximate TB mix-
ing in the leptonic sector we first consider the extension
to quarks without grand unification and then the more
ambitious task of building grand unified models. In
GUT models based on SU�5� � Gf or SO�10� � Gf,

4

where Gf is a flavor group, all fields in a whole represen-
tation of SU�5� or SO�10� must have the same transfor-
mation properties under Gf. This poses a strong con-
straint on the way quarks and leptons have to transform
under Gf.

A. Extension to quarks without GUTs

The simplest attempts of directly extending models
based on A4 to quarks have not been satisfactory. The
most appealing possibility is to adopt for quarks the
same classification scheme under A4 that one has used
for leptons �see, for example, Ma and Rajasekaran
�2001�, Babu et al. �2003�, and Altarelli and Feruglio

4The Pati-Salam group SU�4� � SU�2� � SU�2� has also been
considered, for example, by King and Malinsky �2007� and
Toorop et al. �2010�.

TABLE V. Characters of S4.

Class ��11� ��12� ��2� ��31� ��32�

C1 1 1 2 3 3
C2 1 1 2 −1 −1
C3 1 −1 0 1 −1
C4 1 1 −1 0 0
C5 1 −1 0 −1 1
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�2006��. Thus, one tentatively assumes that LH quark
doublets Q transform as a triplet 3, while the RH quarks
�uc ,dc�, �cc ,sc�, and �tc ,bc� transform as 1, 1�, and 1�,
respectively. This leads to Vu=Vd and to the identity
matrix for VCKM=Vu

†Vd in the lowest approximation.
This at first appears as promising: a LO approximation
where neutrino mixing is TB and VCKM=1 is a good
starting point. However, there are some problems. First,
the corrections to VCKM=1 turn out to be strongly con-
strained by the leptonic sector because lepton mixing
angles are close to the TB values, and, in the simplest
models, this constraint leads to a too small Vus �i.e., the
Cabibbo angle is rather large in comparison to the al-
lowed shifts from the TB mixing angles� �Altarelli and
Feruglio, 2006�. Also in these models the quark classifi-
cation which leads to VCKM=1 is not compatible with A4
commuting with SU�5�. An additional consequence of
the above assignment is that the top quark mass would
arise from a nonrenormalizable dimension-five operator.
In that case, to reproduce the top mass we need to com-
pensate the cutoff suppression by some extra dynamical
mechanism. Alternatively, we have to introduce a sepa-
rate symmetry breaking parameter for the quark sector,
sufficiently close to the cutoff scale.

Due to this, larger discrete groups have been consid-
ered for the description of quarks. A particularly appeal-
ing set of models is based on the discrete group T�, the
double covering group of A4 �Frampton and Kephart,
1995, 2007; Aranda et al., 2000a, 2000b; Aranda, 2007;
Carr and Frampton, 2007; Chen and Mahanthappa,
2007; Feruglio et al., 2007; Ding, 2008; Frampton and
Matsuzaki, 2009�. As shown in Table II the representa-
tions of T� are those of A4 plus three independent dou-
blets 2, 2�, and 2�. The doublets are interesting for the
classification of the first two generations of quarks �Bar-
bieri et al., 1996; Pomarol and Tommasini, 1996; Bar-
bieri, Hall, Raby, and Romanino, 1997; Barbieri, Hall,
and Romanino, 1997�. For example, Feruglio et al.
�2007� obtained a viable description; i.e., in the leptonic
sector the predictions of the A4 model are reproduced,
while the T� symmetry plays an essential role for repro-
ducing the pattern of quark mixing. However, the classi-
fication adopted in this model is again not compatible
with grand unification.

B. Extension to quarks within GUTs

As a result, the group A4 was considered by many to
be too limited to also describe quarks and to lead to a
grand unified description. It has recently been shown
�Altarelli et al., 2008� that this negative attitude is not
justified and that it is actually possible to construct a
viable model based on A4 which leads to a grand unified
theory �GUT� of quarks and leptons with TB mixing for
leptons and with quark �and charged-lepton� masses and
mixings compatible with experiment. At the same time
this model offers an example of an extra dimensional
SU�5� GUT in which a description of all fermion masses
and mixings is accomplished. The formulation of SU�5�

in extra dimensions has the usual advantages of avoiding
large Higgs representations to break SU�5� and of solv-
ing the doublet-triplet splitting problem. The choice of
the transformation properties of the two Higgses, H5
and H5̄, has a special role in this model. They are chosen
to transform as two different A4 singlets, 1 and 1�. As a
consequence, mass terms for the Higgs color triplets are
not directly allowed and their masses are introduced by
orbifolding as described by Kawamura �Witten, 1985;
Faraggi, 2001; Kawamura, 2001�. In this model, proton
decay is dominated by gauge vector boson exchange giv-
ing rise to dimension-six operators, while the usual con-
tribution of dimension-five operators is forbidden by the
selection rules of the model. Given the large MGUT scale
of SUSY models and the relatively large theoretical un-
certainties, the decay rate is within the present experi-
mental limits. A seesaw realization in terms of an A4
triplet of RH neutrinos �c ensures the correct ratio of
light neutrino masses with respect to the GUT scale. In
this model extra dimensional effects directly contribute
to determine the flavor pattern, in that the two lightest
tenplets, T1 and T2, are in the bulk �with a doubling Ti

and Ti�, i=1,2, to ensure the correct zero mode spec-
trum�, whereas the pentaplets F and T3 are on the brane.
The hierarchy of quark and charged-lepton masses and
of quark mixings is determined by a combination of ex-
tra dimensional suppression factors and U�1�FN charges,
both of which only apply to the first two generations,
while the neutrino mixing angles derive from A4 in the
usual way. If the extra dimensional suppression factors
and the U�1�FN charges are switched off, only the third
generation masses of quarks and charged-leptons sur-
vive. Thus, the charged fermion mass matrices are
nearly empty in this limit �not much of A4 effects re-
main� and the quark mixing angles are determined by
the small corrections induced by those effects. The
model is natural since most of the small parameters in
the observed pattern of masses and mixings as well as
the necessary vacuum alignment are justified by the
symmetries of the model. However, in this case, as in all
models based on U�1�FN, the number of O�1� param-
eters is larger than the number of measurable quantities,
so that in the quark sector the model can only account
for the orders of magnitude �measured in terms of pow-
ers of an expansion parameter� and not for the exact
values of mass ratios and mixing angles. A moderate fine
tuning is only needed to enhance the Cabibbo mixing
angle between the first two generations, which would
generically be of O�	C

2 �.
The problem of constructing GUT models based on

SU�5� � Gf or SO�10� � Gf with approximate TB mixing
in the leptonic sector has been considered �see, for ex-
ample, Ma �2005b, 2006b�, Ma et al. �2006�, Morisi et al.
�2007�, Altarelli et al. �2008�, Bazzocchi, Frigerio, and
Morisi �2008�, Grimus and Kuhbock �2008�, Bazzocchi,
Morisi, Picariello, and Torrente-Lujan �2009�, Ciafaloni
et al. �2009�, and Antusch et al. �2010� based on A4�. In
our opinion most of the models are incomplete �for ex-
ample, the crucial issue of VEV alignment is not really
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treated in depth as it should� and/or involve a number of
unjustified ad hoc fine tuning of parameters. An inter-
esting model based on SU�5� � T� is discussed by Chen
and Mahanthappa �2007�. In this model the SU�5� ten-
plets T3 and Ta �a=1,2� of the third and first two gen-
erations are classified as 1 and 2 of T�, respectively,
while the SU�5� pentaplets are in a 3 of T�. This model
provides a good description of fermion masses and mix-
ings and appears simpler than the model of Altarelli et
al. �2008�, which is also based on SU�5�. However, the
model of Chen and Mahanthappa �2007� is fine tuned. In
fact, one does not understand how it is possible that, for
example, the electron and muon masses can come out so
widely different as observed, given that in this model
their left and right components separately transform in
an identical way under T�. The reason is that in the sec-
ond term of Eq. �5� of Chen and Mahanthappa �2007�,
only one of three possible contractions has been taken
into account. If the missing ones, which are also allowed
by the assumed symmetry properties, are included with
generic coefficients, one in fact finds that the e and 

masses are of the same order in the absence of fine tun-
ing. Given that the expansion parameter in the model is
of O�	C� the fine tuning which is needed is large. One
possible way out would be to invoke some ultraviolet
completion of the model where particular heavy field
exchanges could justify the presence of only the desired
couplings after the heavy fields are integrated out. Also,
in the model of Chen and Mahanthappa �2007� there is
no discussion of the origin of the required vacuum align-
ment. Recently some GUT models based on SU�5�
�S4 have appeared �Hagedorn et al., 2010; Ishimori et
al., 2010�. In these models the first two generation fer-
mions are in also the same S4 representations �either a
doublet, for tenplets, or a triplet, for pentaplets�. In the
absence of an additional principle the electron and
muon masses should naturally be of the same order. Ishi-
mori et al. �2010� obtained the vanishing of the electron
mass at LO by the ad hoc choice of one particular mini-
mum of the scalar potential among a continuous family
of degenerate solutions �see their Eqs. �70� and �71��. In
the case of Hagedorn et al. �2010� the problem is solved
by introducing new heavy particles with suitable interac-
tions that, once integrated out, produce the desired
structure for the mass matrix.

As for the models based on SO�10� � Gf we select two
recent examples with Gf=S4 �Dutta et al., 2009, 2010�
and Gf=PSL2�7� �King and Luhn, 2009b�. The case of
SO�10� is even more difficult than that of SU�5� because
the neutrino sector is tightly related to that of quarks
and charged leptons as all belong to the 16 of SO�10�
�for a general analysis of SO�10� � A4, see Bazzocchi,
Frigerio, and Morisi �2008��. The strategy adopted by
Dutta et al. �2009, 2010� and King and Luhn �2009b�, as
well as in other SO�10� models, is as follows. One con-
siders renormalizable fermion mass terms with the Higgs
multiplets of the SO�10� 10 �h terms� and 126 �f terms�
representations. The Majorana neutrino mass matrix
arises from the 126. One assumes that the dominant con-

tribution to the Dirac masses of fermions is from the h
terms with small corrections from the f terms. In first
approximation the h contribution is a matrix of rank 1
with only the third generation mass being nonvanishing.
The light fermion masses and the quark mixings then
arise from the f terms �and from some possible extra
terms�. The third family dominance is obtained by a
term with a double flavon factor of Dutta et al. �2009,
2010� �based on S4� which then makes it particularly dif-
ficult to keep the corrective f terms small �for this fine
tuning is needed or a suitable ultraviolet completion�.
King and Luhn �2009b� induced the dominant h terms by
a single PSL2�7� sextet flavon �the existence of complex
three- and of six-dimensional representations is the pe-
culiarity of PSL2�7��. In both models in the neutrino
sector one has a sum of types I and II seesaw contribu-
tions of the form

m� = fvL − mD
T 1

fvR
mD, �65�

where the first term is from the exchange of a triplet
Higgs with VEV proportional to vL while the second
term is from type I seesaw with RH mass proportional
to vR. One must assume that the first term is dominant
and the second is negligible. Then the leading approxi-
mation for the fermion Dirac masses is from the h terms
and for neutrino masses from the f terms. The f terms
are diagonalized by the TB mixing unitary matrix. In
this way the connection between quarks and neutrinos is
relaxed and a completely different pattern of mixing can
be realized in the two sectors. Clearly for the fvL domi-
nance in Eq. �65� one needs vL�v2 /vR with v�h / f. This
needs widely different scales for vL and vR in the model
and much of the description of the corresponding dy-
namics, along the lines of Goh et al. �2004� and Mohap-
atra et al. �2007�, remains to be studied in detail. In both
of these models the discussion of the alignment is not
satisfactory. In particular King and Luhn �2009b� only
proved that the arbitrary coefficients appearing in the
most general allowed superpotential can be fitted to lead
to the required ratios of components in the VEVs �while
for a natural model one would require that the align-
ment automatically follows in a whole region of the pa-
rameter space�. In conclusion, the problem of construct-
ing a satisfactory natural model based on SO�10� with
built-in TB mixing at the LO approximation remains
open.

VIII. THE S4 GROUP AND BM MIXING

If one takes the alternative view that the agreement
with TB mixing is accidental and is rather oriented to
consider weak complementarity as a guiding principle,
then a better starting point could be BM mixing. In the
BM scheme tan2 �12=1, to be compared with the latest
experimental determination: tan2 �12=0.45±0.04 �at 1��
�Strumia and Vissani, 2006; Bandyopadhyay et al., 2008;
Fogli et al., 2008a, 2008b; Gonzalez-Garcia and Maltoni,
2008b; Maltoni and Schwetz, 2008; Schwetz et al., 2008�
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�see Fig. 2�, so that a rather large nonleading correction
is needed, as mentioned. A discrete group approach can
also work for BM mixing. We now summarize a model
�Altarelli et al., 2009� based on S4 that leads to BM mix-
ing in first approximation while the agreement with the
data is restored by large NLO corrections that arise
from the charged-lepton sector.

The group S4 is particularly suitable for reproducing
BM mixing in LO because the unitary matrices SBM,
given in Eq. �22�, and TBM, given in Eq. �25�, directly
provide a presentation of S4. We recall that SBM leaves
invariant the most general mass matrix for BM mixing in
the charged-lepton diagonal basis �Eq. �20��, while TBM

leaves invariant the most general diagonal matrix me
†me

for charged leptons �see Eqs. �21� and �23��. In fact, from
Table II, we see that a possible presentation of S4 is
given by

A4 = B2 = �AB�3 = 1. �66�

In terms of 3�3 matrices, we can make the identifica-
tions A=TBM and B=SBM, and Eq. �66� are satisfied. As
was the case for the A4 models, in this model the invari-
ance under A23, which is also necessary to specify BM
mixing according to Eq. �21�, arises again accidentally as
a consequence of the specific field content and is limited
to the contribution of the dominant terms to the neu-
trino mass matrix.

In the model the three generations of LH lepton dou-
blets l and RH neutrinos �c transform as two triplets 3,
while the RH charged leptons ec, 
c, and �c transform as
1, 1�, and 1, respectively. The S4 symmetry is then bro-
ken by suitable triplet flavons. All the flavon fields are
singlets under the standard model gauge group. Addi-
tional symmetries are needed, as usual, to prevent un-
wanted couplings and to obtain a natural hierarchy
among me, m
, and m�. The complete flavor symmetry
of the model is S4�Z4�U�1�FN. A flavon �, carrying a
negative unit of the U�1�FN charge F, acquires a vacuum
expectation value �VEV� and breaks U�1�FN. A super-
symmetric context is adopted, so that two Higgs dou-
blets hu,d, invariant under S4, are present in the model as
well as the U�1�R symmetry related to R parity and the
driving fields in the flavon superpotential. Supersymme-
try also helps producing and maintaining the hierarchy

hu,d�=vu,d�� where � is the cutoff scale of the theory.

The fields in the model and their classification under
the symmetry are summarized in Table VI. The fields �l

0,
�l

0, ��
0, and ��

0 are the driving fields.

The complete superpotential can be written as w=wl
+w�+wd. The wd term is responsible for the alignment.
It was discussed by Altarelli et al. �2009� and this discus-
sion will not be repeated here. The terms wl and w�

determine the lepton mass matrices �we indicate with
�¯� the singlet 1, with �¯ �� the singlet 1�, and with
�¯ �V �V=2,3 ,3�� the representation V�,

wl =
ye

�1�

�2

�2

�2ec�l�l�l� +
ye

�2�

�2

�2

�2ec�l�l�l�

+
ye

�3�

�2

�2

�2ec�l�l�l� +
y


�

�

�

c�l�l�� +

y�

�
�c�l�l�

+ ¯ , �67�

w� = y��cl� + M���c�c� + a��c�c��� + b��c�c��� + ¯ ,

�68�

where a and b are complex coefficients. To keep our
formulas compact, we omit to write the Higgs fields hu,d.
For instance, y��

c�l�l� /� stands for y��
c�l�l�hd /� and

y��cl� stands for y��cl�hu. The powers of the cutoff � also
take into account the presence of the omitted Higgs
fields. Note that the parameters M, M�, M�, and M�� de-
fined above are dimensionless. In the above expression
for the superpotential w, only the lowest order operators
in an expansion in powers of 1/� are explicitly shown.
Dots stand for higher-dimensional operators that will be
discussed later. The stated symmetries ensure that, for
the leading terms, the flavons that appear in wl cannot
contribute to w� and vice versa.

The potential corresponding to wd possesses an iso-
lated minimum for the following VEV configuration:


�l�
�

= �0

1

0
�A,


�l�
�

= �0

0

1
�B , �69�


���
�

= � 0

1

− 1
�C,


���
�

= D , �70�

where the factors A, B, C, and D should obey to the
relations

�3f1A2 + �3f2B2 + f3AB = 0, �71�

TABLE VI. Transformation properties of all the fields.

l ec 
c �c �c hu,d � �l �l �l
0 �l

0 �� �� ��
0 ��

0

S4 3 1 1� 1 3 1 1 3 3� 2 3� 1 3 1 3
Z4 1 −1 −i −i 1 1 1 i i −1 −1 1 1 1 1
U�1�FN 0 2 1 0 0 0 −1 0 0 0 0 0 0 0 0
U�1�R 1 1 1 1 1 1 0 0 0 2 2 0 0 2 2
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D = −
M�

g2
, C2 =

g2
2M�

2 + g3M�
2 − g2M�M��

2g2
2g4

. �72�

Similarly, the Froggatt-Nielsen flavon � gets a VEV, de-
termined by the D term associated to the local U�1�FN
symmetry, and it is denoted by


��
�

= t . �73�

With this VEV configuration, the charged-lepton mass
matrix is diagonal,

ml = ��ye
�1�B2 − ye

�2�A2 + ye
�3�AB�t2 0 0

0 y
Bt 0

0 0 y�A
�vd,

�74�

so that at LO there is no contribution to the UPMNS mix-
ing matrix from the diagonalization of charged-lepton
masses. In the neutrino sector for the Dirac and RH
Majorana matrices we have

m�
D = �1 0 0

0 0 1

0 1 0
�yvu,

�75�

MN = �2M + 2aD − 2bC − 2bC

− 2bC 0 2M + 2aD

− 2bC 2M + 2aD 0
�� .

The matrix MN can be diagonalized by the BM mixing
matrix UBM, which represents the full lepton mixing at
the LO, and the eigenvalues are

M1 = 2�M + aD − �2bC�� ,
�76�

M2 = 2�M + aD + �2bC��, M3 = 2�M + aD�� .

After the seesaw mechanism, since the Dirac neutrino
mass matrix commutes with MN and its square is a ma-
trix proportional to unity, the light neutrino Majorana
mass matrix, given by the seesaw relation m�

= �m�
D�TMN

−1m�
D, is also diagonalized by the BM mixing

matrix and the eigenvalues are

�m1� =
�y2�vu

2

2�M + aD − �2bC�
1

�
,

�77�

�m2� =
�y2�vu

2

2�M + aD + �2bC�
1

�
, �m3� =

�y2�vu
2

2�M + aD�
1

�
.

The light neutrino mass matrix depends on only two ef-
fective parameters; at LO the terms M and aD enter the
mass matrix in the combination F
M+aD. The coeffi-
cients ye

�i�, y
, y�, y, a, and b are all expected to be of
O�1�. A priori M could be of O�1�, corresponding to a
RH neutrino Majorana mass of O���, but, actually, it
must be of the same order as C and D. In the context of
a grand unified theory this would correspond to the re-

quirement that M is of O�MGUT� rather than of
O�MPlanck�.

We expect a common order of magnitude for the
VEVs �scaled by the cutoff ��,

A � B � v, C � D � v�. �78�

However, due to the different minimization conditions
that determine �A ,B� and �C ,D�, we may tolerate a
moderate hierarchy between v and v�. Similarly the or-
der of magnitude of t is, in principle, unrelated to those
of v and v�. It is possible to estimate the values of v and
t by looking at the mass ratios of charged leptons �while
v� only enters in the neutrino sector�, and the result is
that t�0.06 and v�0.08 �modulo coefficients of O�1��.

So far we have shown that, at LO, we have diagonal
and hierarchical charged leptons together with the exact
BM mixing for neutrinos. It is clear that substantial
NLO corrections are needed to bring the model to agree
with the data on �12. A crucial feature of the model is
that the neutrino sector flavons �� and �� are invariant
under Z4 which is not the case for the charged-lepton
sector flavons �l and �l. The consequence is that �� and
�� can contribute at NLO to the corrections in the
charged-lepton sector, while at NLO �l and �l cannot
modify the neutrino sector couplings. As a result the
dominant corrections to the BM mixing matrix only oc-
cur at NLO through the diagonalization of the charged
leptons. In fact, at NLO the neutrino mass matrix is still
diagonalized by UBM but the mass matrix of charged
leptons is no more diagonal. Including these additional
terms from the diagonalization of charged leptons the
UPMNS matrix can be written as

UPMNS = Ul
†UBM, �79�

and therefore the corrections from Ul affect the neutrino
mixing angles at NLO according to

sin2 �12 =
1
2

−
1
�2

�V12 + V13�v�,

sin2 �23 =
1
2

, �80�

sin �13 =
1
�2

�V12 − V13�v�,

where the coefficients Vij arise from Ul. By comparing
these expressions with the current experimental values
of the mixing angles in Table I, we see that, to correctly
reproduce �12, we need a parameter v� of the order of
the Cabibbo angle 	C. Moreover, barring cancellations
of or among some of the Vij coefficients, �13 is also cor-
rected by a similar amount, while �23 is unaffected at the
NLO. A salient feature of this model is that, at NLO
accuracy, the large corrections of O�	C� only apply to �12
and �13 while �23 is unchanged at this order. As a correc-
tion of O�	C� to �23 is hardly compatible with the
present data �see Table I� this feature is crucial for the
phenomenological success of this model. It is easy to see
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that this essential property depends on the selection in
the neutrino sector of flavons �� and �� that transform as
1 and 3 of S4, respectively. If, for example, the singlet ��

is replaced by a doublet �� �and correspondingly the
singlet driving field ��

0 is replaced by a doublet ��
0�, all

other quantum numbers being the same, one can con-
struct a variant of the model along similar lines, but in
this case all the three mixing angles are corrected by
terms of the same order. This confirms that a particular
set of S4 breaking flavons is needed in order to preserve
�23 from taking as large corrections as the other two
mixing angles.

This discussion applies at the NLO and we expect that
at the next-to-next-to-leading-order the value of �23 will
eventually be modified with deviations of about O�	C

2 �.
The next generation of experiments, in particular those
exploiting a high intensity neutrino beam, will probably
reduce the experimental error on �23 and the sensitivity
on �13 to few degrees. All quantitative estimates are
clearly affected by large uncertainties due to the pres-
ence of unknown parameters of order 1, but in this
model a value of �13 much smaller than the present up-
per bound would be unnatural. If in the forthcoming
generation of experiments no significant deviations from
zero of �13 will be detected, this construction will be
strongly disfavored.

IX. LEPTON FLAVOR VIOLATION

Neutrino oscillations provide evidence of flavor con-
version in the lepton sector. This indicates that lepton
flavor violation �LFV� might take place, at least at some
level, also in other processes such as those involving
charged leptons. Flavor violating decays of charged lep-
tons, strictly forbidden in the SM, are indeed allowed as
soon as neutrino mass terms are considered. If neutrino
masses are the only source of LFV, the effects are too
small to be detected, but in most extensions of the SM
where new particles and new interactions with a charac-
teristic scale �NP are included, the presence of new
sources of flavor violation, in both quark and lepton sec-
tors, is a generic feature. The scale �NP can be much
smaller than the cutoff scale � introduced before. In-
deed, there are several indications suggesting new phys-
ics at the TeV scale, such as a successful gauge coupling
unification, viable solutions to the hierarchy problem,
and realistic dark matter candidates. In a low-energy de-
scription, the associated effects can be parametrized by
higher-dimensional operators. The dominant terms are
represented by dimension-six operators suppressed by
two powers of �NP,

Leff = i
e

�NP
2 ei

cH†�
�F
�Zijlj +
1

�NP
2 �four

-fermion operators� + H.c., �81�

where e is the electric charge and Zij denotes an adimen-
sional complex matrix with indices in flavor space. If the
underlying theory is weakly interacting with a typical

coupling constant gNP and predicts new particles of mass
mNP, we expect �NP	4�mNP /gNP. The present bounds
on the branching ratios �Raidal et al., 2008� of the rare
charged-lepton decays set stringent limits on combina-
tions of the scale �NP and the coefficients of the in-
volved operators. For instance, from B�
→e���1.2
�10−11 �Brooks et al., 1999; Adam et al., 2010� we get
�Z
e��10−8� ��NP�TeV� /1 TeV�2. Typically, for coeffi-
cients of order 1, the existing bounds require a large
scale �NP, several orders of magnitude larger than the
TeV scale. Conversely, to allow for new physics close to
the TeV scale coefficients much smaller than 1 are re-
quired, which may indicate the effect of a flavor symme-
try.

In theories with a flavor symmetry group Gf sponta-
neously broken by a set of small parameters �, the coef-
ficients of the effective Lagrangian in Eq. �81� become
functions of �. The low-energy Lagrangian of Eq. �81� is
derived from the theory defined close to the cutoff scale
�, where all operators are invariant under Gf, thanks to
their dependence on the flavon multiplets. Below the
flavor symmetry breaking scale the flavons are replaced
by their VEVs, which enter the coefficients of Leff
through the dimensionless combination �	VEV/�. Ex-
ploiting the smallness of the parameters � we can keep
in Leff the first few terms of a power series expansion.
For instance,

Zij 
 Zij��� = Zij
�0� + Zij

�1�� + Zij
�2��2 + ¯ . �82�

Note that the same symmetry breaking parameters that
control lepton masses and mixing angles also control the
flavor pattern of the operators in Leff. This result is in-
teresting in several respects. First, the presence of the
factors �n can help in suppressing the rates of rare
charged-lepton decays while allowing for a relatively
small and accessible scale �NP. Second, once the above
expansion has been determined in a given model, it
could be possible to establish characteristic relations
among LFV processes as a consequence of flavor sym-
metries and their pattern of symmetry breaking. Finally,
if �NP is sufficiently small, this opens the possibility that
new particles might be produced and detected at the
CERN Large Hadron Collider �LHC�, with features that
could additionally confirm or reject the assumed symme-
try pattern. This allows, at least in principle, to realize an
independent test of the flavor symmetry in the charged-
lepton sector. While the size of the scale �NP could be
relatively small, in our presentation we assume that the
flavor scale or cutoff � is extremely large, possibly as
large as the GUT scale. Then all low-energy effects due
to the flavon dynamics are essentially those associated to
their VEVs, which enter the effective higher-
dimensional operators through the dimensionless combi-
nation �. Virtual flavon exchanges give rise to other
higher-dimensional operators which are depleted by in-
verse power of � and can be safely neglected. A much
richer variety of effects due to the flavor dynamics
would be possible if the scale � was much smaller, close
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to the 100 TeV energy range, but we do not consider
this possibility here.

The effects described by Leff are well known. In a field
basis where the kinetic terms are canonical and the
charged-lepton mass matrix is diagonal the real and
imaginary parts of the diagonal matrix elements Zii are
proportional to the anomalous magnetic dipole mo-
ments �MDMs� ai and to the electric dipole moments
�EDMs� di of charged leptons, respectively,

ai = 2mi
ch v

�2�NP
2 Re Zii, di = e

v
�2�NP

2 Im Zii. �83�

The off-diagonal elements Zij describe the amplitudes
for the radiative decays of the charged leptons,

Rij =
B�li → lj��

B�li → lj�i�̄j�
=

12�2�3 

GF
3mi

ch2
�NP

4
��Zij�2 + �Zji�2� , �84�

where  is the fine structure constant, GF is the Fermi
constant, and mi

ch is the mass of the lepton li. Finally, the
four-fermion operators, together with the dipole opera-
tors controlled by Z, describe other flavor violating pro-
cesses such as 
→eee, �→


, and �→eee.

An interesting example of flavor symmetry is that of
minimal flavor violation �MFV� �Sekhar Chivukula and
Georgi, 1987; Hall and Randall, 1990; Ciuchini et al.,
1998; Buras et al., 2001; D’Ambrosio et al., 2002; Cir-
igliano et al., 2005; Cirigliano and Grinstein, 2006;
Davidson and Palorini, 2006; Grinstein et al., 2007�
whose �minimal� flavor symmetry group in the lepton
sector is Gf=SU�3�ec �SU�3�l. Electroweak singlets ec

and doublets l transform as �3,1� and �1, 3̄�, respectively.
The flavon fields or better their VEVs are the Yukawa
couplings of the charged leptons Yl=ml /v and the adi-
mensional coupling constants 
 of the five-dimensional

operator O5 in Eq. �2�. They transform as �3̄ ,3� and
�1,6�, respectively. On a basis where the charged leptons
are diagonal, we have

Yl =
�2

v
ml

diag, 
 =
M

v2 U*m�
diagU†, �85�

where M denotes the mass scale suppressing the opera-
tor O5. In MFV models the leading off-diagonal ele-
ments of Zij are given by

Zij = c�Yl

†
�ij

= �2c
mi

ch

v
M2

v4 ��msol
2 Ui2Uj2

* ± �matm
2 Ui3Uj3

* � , �86�

where c is an overall coefficient of order 1 and the plus
�minus� sign refers to the case of normal �inverted� hier-
archy. We see that, due to the presence of the ratio
M2 /v2, the overall scale of these matrix elements is
poorly constrained. This is due to the fact that MFV
does not restrict the overall strength of the coupling con-
stants 
, apart from the requirement that they remain in
the perturbative regime. Very small or relatively large
�but smaller than 1� 
 can be accommodated by adjust-

ing the scale M. Thus, even after fixing �NP close to the
TeV scale, in MFV the nonobservation of li→ lj� could
be justified by choosing a small M, while a positive signal
in 
→e� with a branching ratio in the range of 1.2
�10−11–1.2�10−13 could also be fitted by an appropri-
ate M, apart from a small region of the �13 angle, around
�13	0.02 where a cancellation can take place in the left-
hand side of Eq. �86�. The dependence on the scales M
and �NP can be eliminated by considering ratios of
branching ratios. For instance,

R
e

R�


= � 2�msol
2

3�matm
2 ± �2 sin �13e

i��2

� 1, �87�

where we took the TB ansatz to fix �12 and �23. We see
that B�
→e���B��→
�� always in MFV. Moreover,
for �13 above approximately 0.07, B�
→e���1.2
�10−11 implies B��→
���10−9. For �13 below 0.07,
apart possibly from a small region around �13	0.02,
both the transitions 
→e� and �→
� might be above
the sensitivity of the future experiments. The present
limits are B��→
���1.6�10−8 and B��→e���9.4
�10−8. A future super-B factory might improve them by
about one order of magnitude. In the SUSY case there
are two doublets in the low-energy Lagrangian and we
should take into account the tan � dependence.

A different result for the matrix Z is obtained in the
model described in Sec. IV where Gf=A4�Z3�U�1�FN.
Starting from the relevant set of invariant operators, af-
ter the breaking of the flavor and electroweak symme-
tries and after moving to a basis with canonical kinetic
terms and diagonal mass matrix for charged leptons, we
find �Feruglio et al., 2008, 2009b�

Z = �O�t2�� O�t2�2� O�t2�2�

O�t�2� O�t�� O�t�2�

O��2� O��2� O���
� , �88�

where each matrix element is known only up to an un-
known order-1 dimensionless coefficient. There are two
independent symmetry breaking parameters. The pa-
rameter t= 
�� /� controls the charged-lepton mass hier-
archy and �=vT /� describes the breaking of A4. Note
that the uncertainty in the overall scale of the matrix
elements Zij is related to the parameter � and is much
smaller than the corresponding uncertainty in MFV. We
can see that MDMs and EDMs arise at the first order in
the parameter �. By assuming that the unknown coeffi-
cients have absolute values and phases of order 1, from
Eqs. �83� and �88� we have

ai = O�2mi
ch2

/�NP
2 �, di = O�emi

ch/�NP
2 � . �89�

From the existing limits on MDMs and EDMs and using
Eqs. �89� as exact equalities we find the results shown in
Table VII.

Concerning the flavor violating dipole transitions,
from Eq. �88� we see that the dominant contribution to
the rate for li→ lj� is given by
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B�li → lj��
B�li → lj�i�̄j�

=
48�3 

GF
2�NP

4 �wij��2, �90�

where wij are numbers of order 1. As a consequence, the
branching ratios of the three transitions 
→e�, �→
�,
and �→e� are all expected to be of the same order,

B�
 → e�� 	 B�� → 
�� 	 B�� → e�� . �91�

This is a distinctive feature of this class of models. Given
the present experimental bound on B�
→e��, Eq. �91�
implies that �→
� and �→e� have rates much below
the present and expected future sensitivity. Moreover,
from the current �future� experimental limit on B�

→e�� �Brooks et al., 1999; MEG, 1999; Adam et al.,
2010� and assuming �w
e�=1, we derive the following
bound on �� /�NP

2 �:

B�
 → e�� � 1.2 � 10−11�10−13� ,
�92�

� �

�NP
2 � � 1.2 � 10−11�1.1 � 10−12� GeV−2.

Taking two extreme values for the parameter ��� we find

�NP � 20�67� TeV ���� = 0.005� ,
�93�

�NP � 65�210� TeV ���� = 0.05� .

This model also allows for four-fermion operators that
are not suppressed by any power of the small parameter
t or � and that violate the individual lepton numbers Li
�Feruglio and Paris, 2010�. They are all characterized by
the selection rule �Le�L
�L�=2. For instance, one such
operator is

�l̄l���l̄l�� = �l̄el�l̄
l� + l̄
lel̄�le + l̄�l
l̄el
 + H.c.� + ¯ ,

�94�

where dots stand for additional flavor conserving contri-
butions. These operators can contribute to LFV decays
such as �−→
+e−e−, �−→e+
−
−, and their conjugate,
whose branching ratios have upper bounds of the order
of 10−7 �Amsler et al., 2008�. Through a rough dimen-
sional estimate we find a lower bound on the scale �NP
of the order of 15 TeV. From the previous consider-
ations we see that, even invoking a cancellation in the
imaginary part of Zee to suppress the contribution to the

electron EDM, it is difficult to avoid the conclusion that
the scale �NP should lie considerably above the TeV
range. We recall that if the operator in Eq. �81� origi-
nates from one-loop diagrams via the exchange of
weakly interacting particles of masses mNP, then in our
normalization a lower bound on �NP of 20 TeV corre-
sponds to a lower bound on mNP of about
gNP�NP / �4��	1 TeV, assuming gNP is similar to the
SU�2� gauge coupling.

All the previous estimates are based on an effective
Lagrangian approach, with no explicit reference to the
dynamics at the scale �NP. If the degrees of freedom
associated to the new physics at the scale �NP and their
interactions are known, it is possible to directly compute
the amplitudes of interest. For instance, the SUSY
model of Sec. IV can be completed by adding a set of
soft SUSY breaking terms, which are constrained by the
invariance under Gf=A4�Z3�U�1�FN and its pattern of
symmetry breaking �Ishimori et al., 2008; Feruglio et al.,
2009a; Hayakawa et al., 2009; Ding and Liu, 2010�. LFV
amplitudes arise at one-loop level via exchange of slep-
tons, charginos, and neutralinos with masses of order
mSUSY. An explicit computation of B�li→ lj�� confirms
both the predictions of Eq. �91� and the behavior of Eq.
�90�, with �NP= �4� /g�mSUSY. The coefficients wij are
typically of O�0.1�. When � is small, which also entails
small tan � in our model, relatively light SUSY particles
are allowed, while for � close to its upper limit, 0.05,
SUSY particle masses of several hundred GeV or close
to the TeV are needed to satisfy the present bound on
B�
→e�� particularly if tan � is larger than 10. In either
case there is only a limited region of the parameter
space where it is possible to explain the observed dis-
crepancy in the muon MDM and to satisfy at the same
time the current limit on B�
→e��. An interesting case
is that of universal SUSY breaking terms, giving rise to a
cancellation in the elements of Zij below the diagonal
�Feruglio et al., 2009a, 2010�. Under these circumstances
B�li→ lj�� scale as �4 rather than as �2, with the possibil-
ity of much lighter SUSY particles. In SUSY A4 models
also LFV four-fermion operators are depleted by powers
of � and the corresponding bounds on mSUSY are re-
laxed.

In the model discussed in Sec. VIII, with Gf=S4�Z4
�U�1�FN, the matrix Z is given by �Masiero, 2009�

Z = �O�t2v2� O�t2v2v�� O�t2v2v��

O�tvv�� O�tv� O�tvv�2�

O�vv�� O�vv�2� O�v�
� . �95�

Predictions for EDMs and MDMs and corresponding
bounds are similar to those discussed above in the case
of the A4 model and summarized in Table VII. Concern-
ing the radiative decays of the charged leptons we find
that R
e and R�e scale as v�2 /�NP

4 , whereas R�
 scales as
v�4 /�NP

4 . In this case, the symmetry breaking parameter
v� is considerably larger than the parameter � of the A4
model and this gives rise to more restrictive bounds on

TABLE VII. Experimental limits on lepton MDMs and EDMs
and corresponding bounds on the scale �NP derived from Eq.
�89�. The data on the � lepton have not been reported since
they are much less constraining. For the anomalous magnetic
moment of the muon, �a
 stands for the deviation of the ex-
perimental central value from the SM expectation �Bennett et
al., 2004; Passera et al., 2009�.

de�1.6�10−27e cm �NP�80 TeV
d
�2.8�10−19e cm �NP�80 GeV
�ae�3.8�10−12 �NP�350 GeV
�a
=302±88�10−11 �NP	2.7 TeV
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the scale of new physics �NP. From B�
→e���1.2
�10−11�10−13� we get

�NP � 90�300� TeV �v� = 0.1� ,
�96�

�NP � 130�430� TeV �v� = 0.2� .

The model also predicts

B�
 → e�� 	 B�� → e�� � B�� → 
�� . �97�

Summarizing, in models with discrete flavor symme-
tries LFV processes are generically suppressed by the
presence of small symmetry breaking parameters. How-
ever, such a suppression is not completely efficient, at
least in the explored models, to guarantee a scale of new
physics close to the TeV. The best case is the one of the
A4 model, thanks to the very small expansion parameter
�. In specific SUSY realizations of the A4 symmetry the
present limits on the branching ratios of LFV processes
still allow for a relatively light spectrum of superpar-
ticles in a region of masses of interest to LHC.

X. LEPTOGENESIS

The violation of B−L implied by the seesaw mecha-
nism suggests an interesting link between neutrino phys-
ics and the mechanism that produced the observed
baryon asymmetry in the early Universe. If the baryon
asymmetry originates well above the electroweak scale,
B−L violation represents a necessary condition since
any initial B+L asymmetry would be erased in the sub-
sequent evolution of the Universe. According to lepto-
genesis the asymmetry is determined by the CP violating
out-of-equilibrium decays of the heavy RH neutrinos
�Fukugita and Yanagida, 1986�. Through B−L noncon-
servation of neutrino interactions, the asymmetry is first
generated in the leptonic number and then partly con-
verted into the observed baryonic one via sphaleron in-
teractions. Depending on whether the relevant decays
occur at a sufficiently high temperature or not, we have
an unflavored regime, where the leptons in the final
state are indistinguishable, or a flavored regime, where
the specific interactions of the different leptons in the
decay products cannot be neglected �Abada et al., 2006;
Nardi et al., 2006�. It is also quite remarkable that, at
least in its simplest implementation, leptogenesis re-
quires light neutrino masses below the eV scale �Büch-
muller et al., 2003, 2004, 2005; Giudice et al., 2004� in a
range which is fully compatible with other experimental
constraints. Unfortunately, without any additional as-
sumptions, it is difficult to promote this elegant picture
into a testable theory due to the large number of inde-
pendent parameters of the seesaw model.

Models of lepton masses based on flavor symmetries
typically depend on a restricted number of parameters,
thus opening the interesting possibility of relating the
baryon asymmetry to other low-energy observables. As
a general rule, to provide a realistic description of lepton
masses and mixing angles the flavor symmetry should
always be broken. The breaking is described by a set of

small dimensionless quantities �, which provide efficient
expansion parameters. As seen in previous sections,
small observable quantities such as charged-lepton mass
ratios, �13, �23−� /4, can be expanded in power series of
�, and the predictions are dominated by the lowest �posi-
tive� power.

In the context of leptogenesis, given the extreme
smallness of the baryon asymmetry �Komatsu et al.,
2009�


B
CMB = �6.2 ± 0.15� � 10−10, �98�

it can be convenient, at least in a certain regime, that the
CP asymmetries in the RH neutrino decays are also sup-
pressed by powers of �. If the baryon asymmetry is
dominated by the decay of a single RH neutrino, we can
write5


B = d�k , �99�

where d describes the combined effect of sphaleron con-
version and dilution from photon production, � is the
relevant CP asymmetry, and k takes into account the
wash-out effects. Typically we expect a dilution factor d
of order 10−2 and, barring fine tuning of the parameters,
a wash-out factor k in the range of 10−3–10−2, which
favors � around 10−6–10−5. Such CP asymmetry arises
from the interference of the tree-level and the one-loop
decay amplitudes and depends quadratically on the neu-
trino Yukawa couplings. In models such as the ones dis-
cussed in Secs. IV and VIII, where the RH neutrino
masses are large, close to 1014 GeV and the correspond-
ing neutrino Yukawa couplings are of O�1�, a rough es-
timate of the total CP asymmetry would give �
=O„1/ �8��…, by far too large compared to 10−6–10−5. It
is therefore interesting to analyze under which condi-
tions the CP asymmetries vanish in the limit of exact
symmetry, so that the first nonvanishing contribution is
given by some power of the symmetry breaking param-
eters �. If the CP asymmetry relevant for leptogenesis is
suppressed by powers of �, this opens the interesting
possibility of relating the observed baryon asymmetry

B to other low-energy observable quantities �Moha-
patra and Nasri, 2005; Mohapatra et al., 2005a; Lin,
2009a� such as �13, �23−� /4, and B�li→ lj��.

The total CP asymmetries in the decay of a RH neu-
trino �i

c are

�i =
�i − �̄i

�i + �̄i

, �100�

where �i ��̄i� is the decay rate of �i
c into leptons �anti-

leptons�. In the flavored regime the relevant asymme-
tries �if involve final states with a specific lepton flavor f.
The flavored regime takes place for Mi�c1012 GeV
where c=1 �1+tan2 �� in the ordinary �SUSY� case. The

5We denote the CP asymmetries with � and we keep � to
indicate the generic expansion parameter of a spontaneously
broken flavor symmetry.
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unflavored regime occurs for RH neutrino masses above
that threshold. At one loop we have �Covi et al., 1996�

�if =
1

8�Ŷii

�
j�i

�Im�ŶijŶifŶjf
* �fij + Im�ŶjiŶifŶjf

* �gij� ,

�101�

�i = �
f

�if =
1

8�Ŷii

�
j�i

Im�Ŷij
2�fij, �102�

where Y is a combination of the neutrino Yukawa cou-
plings Y=m�

D /vu,

Yij = �YY†�ij, �103�

and the hat in Eqs. �101� and �102� denotes a basis where
the mass matrix M of the heavy Majorana neutrinos and
that of charged leptons ml are diagonal. The functions fij
and gij depend on the mass ratios of the RH neutrino
masses Mi. From Eqs. �101� and �102� we see that both

�if and �i vanish if Ŷ is diagonal. The total asymmetries �i

vanish also if Ŷ has real nondiagonal entries. A neces-

sary and sufficient condition for a diagonal Ŷ is

YM − MYT = 0, �104�

where the matrices Y and M are evaluated in any basis.
If the model is invariant under the action of a flavor

symmetry group Gf, we have an interesting sufficient
condition for the vanishing of the CP asymmetries. If
the heavy RH neutrinos transform in a �three-
dimensional� irreducible representation of Gf, then in
the limit of exact symmetry, where the symmetry break-
ing parameters � go to zero, all CP asymmetries vanish
�Bertuzzo et al., 2009�. In this limit it is possible to show
that Y becomes proportional to the unit matrix as a con-
sequence of a completely general group theoretical
property. Thus, from Eqs. �101� and �102� we conclude
that the asymmetries �i and �if vanish. Note that irreduc-
ible representations of dimension larger than 1 are only
possible if Gf is non-Abelian. Beyond the symmetry

limit, in general, Ŷ gets corrections and develops com-
plex off-diagonal entries at some order �p. If the spec-
trum of RH neutrinos is nondegenerate in the symmetry
limit, we expect �i=O��2p� and �if=O��p�. Degeneracy of
RH neutrinos can modify this behavior through the de-
pendence on � of the functions fij and gij. This result
applies to both models described in Secs. IV and VIII,
where the RH neutrinos transform in the three-
dimensional representations of A4 and S4, respectively.
In the limit of exact flavor symmetry we find in both
cases Y= �y�21, where 1 denotes the identity matrix. This
equality holds in any basis, in particular in the mass
eigenstate basis of RH neutrinos and we have �i=0 in
the symmetry limit. In both models all RH neutrino are
very heavy, with masses well above 1012 GeV, and the
unflavored regime applies.

In the A4 model of Sec. IV, Ŷ acquires complex off-
diagonal entries of order �	vT /�. The CP asymmetries

�i depend only on three real parameters: two indepen-
dent real symmetry breaking parameters �i and the
lightest neutrino mass. In particular, there is only one
independent phase which is determined by the lightest
neutrino mass up to an overall sign. We have �Jenkins
and Manohar, 2008�

�i 	
�2

8�
. �105�

More precisely �Bertuzzo et al., 2009; Hagedorn et al.,
2009; Riva, 2010�, for normal ordering of the neutrino
mass spectrum all asymmetries �i are of the same order
of magnitude. For inverted ordering the two asymme-
tries �1,2 get enhanced compared to the approximate es-
timate of Eq. �105� by a factor of 103 coming from the
functions f12 and f21 as a result of the near degeneracy of
two heavy RH neutrinos. To reproduce the observed
baryon asymmetry �Eq. �98��, different wash-out effects
are required in the two cases. In the case of normal or-
dering the experimental value in Eq. �98� is obtained
when the parameter � is in its natural window, 5
�10−3–5�10−2, for a wide range of neutrino Yukawa
couplings y. For inverted ordering a much larger wash-
out suppression is needed. When � falls in the optimal
range of 5�10−3–5�10−2 this can be accommodated by
restricting both y sin � and m3 in a limited range. It is
quite remarkable that in both cases the range of the
symmetry breaking parameter � suggested by the con-
straints on lepton masses and mixing angles corresponds
to that required to get the observed baryon asymmetry
through leptogenesis.

In the S4 model discussed in Sec. VIII, Ŷ acquires
complex off-diagonal entries at the order v4 /v� and the
CP asymmetries are expected to be of order v8 /v�28�.
Assuming a typical wash-out suppression of order 10−2,
the observed baryon asymmetry can be obtained for val-
ues of �v ,v�� close to the range selected to fit charged-
lepton masses and mixing angles.

Another class of models where the CP asymmetries
vanish is the one of type I seesaw models where the
Dirac and Majorana neutrino mass matrix m�

D and M as
well as their seesaw combination m� are form diagonal-
izable. A matrix A depending on a set of parameters  i
is said to be form diagonalizable �Low and Volkas, 2003�
if it is diagonalized by unitary transformations that do
not depend on  i,

UL
† A� �UR = Ad� � , �106�

where Ad� � is diagonal and the unitary matrices UL,R
are independent from  . Examples of a form-
diagonalizable matrix are m� in Eqs. �13�, �14�, �18�, and
�19�. The parameters are the eigenvalues m1,2,3 and the
diagonalizing matrices are UR=U

L
* =UTB and UR=U

L
*

=UBM, respectively. As we have seen in Sec. II, form-
diagonalizable matrices naturally arise in the context of
models with discrete flavor symmetries. It is possible to
show that if in a type I seesaw m�

D, M, and m� are all
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form diagonalizable, then the matrix Ŷ is diagonal and
the CP asymmetries vanish �Aristizabal Sierra et al.,
2010; González Felipe and Serodio, 2010�. In realistic
models m�

D, M, and m� are typically form diagonalizable
only in some symmetry limit. Symmetry breaking terms
usually spoil this property and allow for small nonvan-
ishing CP asymmetries.

We have so far discussed the regime of large RH
masses and large neutrino Yukawa couplings. When the
smallest RH neutrino mass is below the so-called
Davidson-Ibarra bound �Davidson and Ibarra, 2002�, 4
�108–2�109 GeV, and we are in the regime of strong
hierarchy among RH neutrino masses, the CP asymme-
try associated to the lightest RH neutrino decay is too
small to allow for a successful leptogenesis. To evade the
Davidson-Ibarra bound we should depart from the
strong hierarchical regime. Under certain conditions a
significant enhancement of the CP asymmetry can be
achieved even for RH neutrino mass ratios as small as
0.1 �Hambye et al., 2004; Raidal et al., 2005�. Alterna-
tively, we can exploit the regime of resonant leptogen-
esis �Pilaftsis, 1997�, occurring when the decaying RH
neutrino is quasidegenerate in mass with some other RH
neutrino, the mass differences being comparable with
the RH neutrino decay width. A quasidegeneracy of the
RH neutrino spectrum is better understood and dynami-
cally controlled in the presence of an underlying flavor
symmetry. Several symmetries have been proposed in
the literature such as Gf=SU�3�ec �SU�3�l�O�3��c in
minimal lepton flavor violation �Cirigliano et al., 2005,
2007; Cirigliano and Grinstein, 2006; Davidson and
Palorini, 2006; Branco et al., 2007; Grinstein et al., 2007�
or Gf=SO�3� from Pilaftsis and Underwood �2005�. In
these two examples the light neutrino masses and their
mixing angles are not explained but just accommodated.
An interesting model based on a flavor symmetry group
Gf=A4�Z3�Z4 is that of Branco et al. �2009�. Like the
model discussed in Sec. IV it predicts a lepton mixing
close to TB. Due to the presence of an additional dis-
crete factor in the symmetry group, the RH neutrino
spectrum is degenerate at LO, and the degeneracy is
lifted by radiative corrections or small soft breaking
terms, allowing for successful resonant leptogenesis, for
a wide range of RH neutrino masses.

XI. SUMMARY AND CONCLUSION

We reviewed the motivation, formalism, and implica-
tions of applying non-Abelian discrete flavor groups to
the theory of neutrino mixing. The data on neutrino
mixing are by now quite precise. It is a fact that, to a
precision comparable with the measurement accuracy,
the TB mixing pattern is well approximated by the data
�see Fig. 2�. If this experimental result is not a mere
accident but a real indication that a dynamical mecha-
nism is at work to guarantee the validity of TB mixing in
the leading approximation, corrected by small nonlead-
ing terms, then non-Abelian discrete flavor groups
emerge as the main road to an understanding of this

mixing pattern. Indeed, the entries of the TB mixing
matrix are clearly suggestive of “rotations” by simple
specific angles. In fact, the group A4, the simplest group
used to explain TB mixing, is specified by the set of
those rotations that leave a regular tetrahedron invari-
ant. We started by recalling some basic notions about
finite groups and then concentrated on those symme-
tries, such as A4 and S4, which are found to be the main
candidates for obtaining TB mixing. We discussed the
general mechanism that realizes TB mixing within the
framework of discrete flavor symmetries. The symmetry
is broken down to two different subgroups in the
charged-lepton sector and the neutrino sector, and the
mixing matrix arises from the mismatch between the two
different residual symmetries. TB mixing requires a fla-
vor symmetry group possessing appropriate residual
subgroups. The breaking can be realized in a natural
way through the specific vacuum alignments of a set of
scalar flavons. We described a set of models where TB
mixing is indeed derived at leading order within this
mechanism. There are many variants of such models �in
particular, with or without seesaw� with different de-
tailed predictions for the spectrum of neutrino masses
and for deviations from the TB values of the mixing
angles. In general at NLO the different mixing angles
receive corrections of the same order of magnitude,
which are constrained to be small due to the experimen-
tal results which are close to the TB values. Indeed, the
small experimental error on �12, which agrees nicely with
the value predicted by TB mixing, suggests that the
NLO corrections should be of order of few percent, at
most. Additional symmetries are needed, typically of the
U�1�FN or ZN type, in order to reproduce the mass hier-
archy of charged leptons. In the neutrino sector there is
no reason for the mass eigenvalues not to be of the same
order in absolute value. Thus, the smallness of the ratio
�r�0.2, where r is defined in Eq. �1�, is accidental in
most of these models. Both normal and inverse hierar-
chy spectra can be realized. The phenomenology of the
models was summarized. We also discussed the implica-
tions of models based on discrete flavor groups for lep-
ton flavor violation and for leptogenesis. Lepton flavor
violating processes, the muon g−2 and the EDMs of
leptons, impose strong constraints on every new physics
model. This is also true for the models considered here.
However, the specific suppression factors and selection
rules induced by the finite flavor symmetry group, in
particular by A4, may help to improve the consistency of
the model even in the presence of new physics at the
TeV scale. The observed baryon asymmetry in the Uni-
verse, explained in terms of leptogenesis from the decay
of heavy Majorana neutrinos, is found to be compatible
with models based on discrete groups. Neutrino Yukawa
couplings of order 1 and RH neutrino masses of order
1014–1015 GeV would typically lead to CP asymmetries
too large to reproduce the observed baryon asymmetry.
As a consequence of a general group theoretical prop-
erty, in all models where the three RH neutrinos trans-
form in a single irreducible representation of the flavor
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group, the unflavored CP asymmetries vanish in the
limit of exact symmetry and small values can be gener-
ated through NLO corrections.

An obvious question is whether some additional indi-
cation for discrete flavor groups can be obtained by con-
sidering the extension of the models to the quark sector,
perhaps in a grand unified context. The answer appears
to be that, while the quark masses and mixings can in-
deed be reproduced in models where TB mixing is real-
ized in the leptonic sector through the action of discrete
groups, there are no specific additional hints in favor of
discrete groups that come from the quark sector. Ex-
amples of grand unified descriptions of all fermion
masses and mixings with TB mixing for neutrinos have
been produced and have been discussed in this review.
For quarks, only the third generation masses are present
at leading order in these models. The other entries of
the mass matrices are small due to additional symme-
tries or other dynamical reasons �for example, suppres-
sion factors from extra dimensions�, and the small mass
ratios and the small mixing angles are generated by
these corrective effects and are not due to the discrete
group. As a consequence, the action of the discrete fla-
vor group is only manifest among the comparable neu-
trino sector masses in the basis where charged leptons
are diagonal.

Different forms of neutrino mixing other than TB
mixing are also amenable to a description in terms of
discrete groups. As an alternative to TB mixing, in Sec.
VIII we discussed the possibility that actually a more
appropriate starting point could be BM mixing, cor-
rected by large terms of O�	C�, with 	C being the
Cabibbo angle �“weak complementarity”�, arising from
the diagonalization of charged leptons. By suitably
modifying the construction in terms of discrete groups
adopted in the case of TB mixing, we identified the
group S4 as a good candidate to also provide, in a differ-
ent presentation, the basis for naturally obtaining BM
mixing in first approximation. In the model described
the NLO terms are such that the dominant corrections
only affect �12 and �13 �which receive O�	C� shifts�, while
�23 receives smaller corrections. A value of �13 near the
present bound would support this possibility.

In the near future the improved experimental preci-
sion on neutrino mixing angles, in particular on �13,
could make the case for TB mixing stronger and then, as
a consequence, the case for discrete flavor groups would
be also strengthened. Further important input could
come from the LHC. In fact, new physics at the weak
scale could have important feedback on the physics of
neutrino masses and mixing.
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