56 research outputs found

    Valorisation of Mediterranean agroindustrial by-products in pig production as feed and anaerobic co-digestion of slurry

    Full text link
    Tesis por compendio[ES] Actualmente, la sostenibilidad del sector porcino depende de su capacidad para responder a la elevada demanda de productos ganaderos derivada del crecimiento de la población, adaptándose a los cambios en los contextos económico y político, y mejorando su rendimiento medioambiental mediante la mitigación de su impacto ambiental. En este contexto, el uso de subproductos agroindustriales ofrece materias primas alternativas en producción animal, con una menor carga ambiental asociada, en forma de piensos para el ganado, fuente de compuestos bioactivos o materias primas útiles en la producción de bioenergía. Esta tesis doctoral pretende evaluar el uso de subproductos agroindustriales mediterráneos como ingredientes en piensos para el ganado porcino o como co-substratos para la producción de biogás. Con este objetivo, se diseñaron y realizaron cuatro ensayos para evaluar el uso de subproductos de la industria del aceite de oliva y del zumo de naranja en alimentación porcina, evaluando su valor nutricional y las consecuencias de su inclusión sobre el rendimiento y la salud de los animales, la calidad del producto final y las emisiones de gases de los purines. Además, se realizó un ensayo para evaluar el efecto de cuatro sustratos agrícolas sobre el potencial bioquímico de metano (BMP) en co-digestión anaerobia con purines. Los resultados obtenidos a partir de los ensayos de valor nutricional indican que las tortas de aceituna y las pulpas de naranja ensayadas pueden ser incluidas en la dieta con cambios asociados en la excreción de nutrientes que conducen a modificaciones en las emisiones potenciales de amoníaco y BMP de los purines. En cuanto a los subproductos de la torta de aceituna, el ensayo de valor nutricional con tortas de aceituna crudas (COC) y parcialmente desgrasadas (PDOC) mostró que ambas tortas son fuentes apreciables de fibra insoluble, pero tienen un valor energético limitado (11.2 y 7.4 MJ/kg MS para COC y PDOC respectivamente) y un bajo valor como fuente de proteínas. En cambio, las pulpas de naranja deshidratadas (DOP) y ensilada secada al sol (ESDOP) ensayadas son una fuente de energía relevante (14.2 y 13.2 MJ/kg MS para DOP y ESDOP respectivamente) con valor añadido debido a su contenido en fibra soluble. En los ensayos de emisiones in vitro, los subproductos ensayados generaron una disminución en la excreción de N en la orina y, en el caso de la pulpa de aceituna, un aumento de la excreción de materia seca en heces. La emisión de amoniaco por kg de purín disminuyó con la inclusión de torta de aceituna y pulpa de naranja, mientras que el BMP por animal y día se vio negativamente afectado por la inclusión de torta de aceituna obteniendo un mayor BMP con estos subproductos. En cuanto a los ensayos de rendimientos productivos, la PDOC y la DOP pueden incluirse en la dieta hasta 120 y 240 g/kg respectivamente, sin efectos negativos en el caso de la PDOC y efectos menores para la DOP sobre los rendimientos productivos, la composición corporal y la calidad de la canal. La inclusión de PDOC y DOP no afectó a los recuentos microbianos ni al volumen, la composición y la emisión global de gases de los purines. Además, se observaron efectos beneficiosos sobre la grasa subcutánea con la inclusión de PDOC, mejorando su concentración en ácido oleico. La co-digestión anaerobia de subproductos agrícolas y purines mejora el BMP de la mezcla de sustratos en comparación con la digestión única de purines. Se obtuvieron mayores valores de BMP con la adición de los sustratos agrícolas, lo que confirma el mejor rendimiento de los sistemas en co-digestión a niveles de inclusión adecuados. Las combinaciones con tomate, pimiento y melocotón al nivel de inclusión 3 (50% de SV) alcanzaron el mayor BMP. Esto supuso un incremento del BMP del 41% con tomate, 44% con pimiento, 28% con melocotón y 12% con caqui. Los sustratos vegetales mostraron un mayor contenido en lípidos, prote[CAT Actualment, la sostenibilitat del sector porcí depèn de la seua capacitat per a respondre a l'elevada demanda de productes ramaders derivada del creixement de la població, adaptant-se als canvis en els contextos econòmic i polític, i millorant el seu rendiment mediambiental mitjançant la mitigació del seu impacte ambiental. En aquest context, l'ús de subproductes agroindustrials ofereix matèries primeres alternatives en producció animal, amb una menor càrrega ambiental associada, en forma de pinsos per al bestiar, font de compostos bioactius o matèries primeres útils en la producció de bioenergia. Aquesta tesi doctoral pretén avaluar l'ús de subproductes agroindustrials mediterranis com a ingredients en pinsos per al bestiar porcí o com co-substrats per a la producció de biogàs. Amb aquest objectiu, es van dissenyar i realitzar quatre assajos per a avaluar l'ús de subproductes de la indústria de l'oli d'oliva i del suc de taronja en alimentació porcina, avaluant el seu valor nutricional i les conseqüències de la seua inclusió sobre el rendiment i la salut dels animals, la qualitat del producte final i les emissions de gasos dels purins. A més, es va realitzar un assaig per a avaluar l'efecte de quatre substrats agrícoles sobre el potencial bioquímic de metà (BMP) en co-digestió anaeròbia amb purins. Els resultats obtinguts a partir dels assajos de valor nutricional indiquen que les trotes d'oliva i les polpes de taronja assajades poden ser incloses en la dieta amb canvis associats en l'excreció de nutrients que condueixen a modificacions en les emissions potencials d'amoníac i BMP dels purins. Quant als subproductes de la torta d'oliva, l'assaig de valor nutricional amb tortes d'oliva crues (COC) i parcialment desengreixades (PDOC) va mostrar que totes dues coques són fonts apreciables de fibra insoluble, però tenen un valor energètic limitat (11.2 i 7.4 MJ/kg MS per a COC i PDOC respectivament) i un baix valor com a font de proteïnes. En canvi, les polpes de taronja deshidratades (DOP) i ensitjada assecada al sol (ESDOP) assajades són una font d'energia rellevant (14.2 i 13.2 MJ/kg MS per a DOP i ESDOP respectivament) amb valor afegit a causa del seu contingut en fibra soluble. Pel que fa als assajos d'emissions in vitro, els subproductes assajats van generar una disminució en l'excreció de N en l'orina i, en el cas de la polpa d'oliva, un augment de l'excreció de matèria seca en femtes. L'emissió d'amoníac per kg de purí va disminuir amb la inclusió de torta d'oliva i polpa de taronja, mentre que el BMP per animal i dia es va veure negativament afectat per la inclusió de torta d'oliva obtenint un major BMP amb aquests subproductes. Quant als assajos de rendiments productius, la PDOC i la DOP poden incloure's en la dieta fins a 120 i 240 g/kg respectivament, sense efectes negatius en el cas de la PDOC i efectes menors per a la DOP sobre els rendiments productius, la composició corporal i la qualitat de la canal. La inclusió de PDOC i DOP no va afectar els recomptes microbians ni al volum, la composició i l'emissió global de gasos dels purins. A més, es van observar efectes beneficiosos sobre el greix subcutani amb la inclusió de PDOC, millorant la seua concentració en àcid oleic. La co-digestió anaeròbia de subproductes agrícoles i purins millora el BMP de la mescla de substrats en comparació amb la digestió única de purins. Es van obtenir majors valors de BMP amb l'addició dels substrats agrícoles, la qual cosa confirma el millor rendiment dels sistemes en co-digestió a nivells d'inclusió adequats. Les combinacions amb tomaca, pimentó i bresquilla al nivell d'inclusió 3 (50% de SV) van aconseguir el major BMP. Això va suposar un increment del BMP del 41% amb tomaca, 44% amb pimentó, 28% amb bresquilla i 12% amb caqui. Els substrats vegetals van mostrar un major contingut en lípids, proteïnes, lignina i cel·lulosa que els substrats de fruita.[EN] Nowadays the sustainability of the pig sector relies on its capability to respond to the increasing demands for livestock products that are arising from population growth, adapting to changes in the economic and policy contexts, and improving its environmental performance through the mitigation of its impact on climate. In this framework, the use of the agro-industrial by-products offers potential alternative raw materials for animal production with a lower associated environmental burden in the form of feedstuffs for livestock, source of bioactive compounds or raw materials useful in bioenergy production. This PhD thesis aims to evaluate the use of Mediterranean agro-industrial by-products as feed ingredients for pigs or co-substrates for biogas production. To fulfil these objectives, four trials were designed and conducted to evaluate the use of olive oil and orange juice industry by-products in swine nutrition, assessing its nutritional value and the consequences of its inclusion in the diet on animals' performance and health, final product quality traits and gas emissions associated to the pig slurry. Additionally, one more trial was conducted to evaluate the effect of four agricultural substrates (tomato, pepper, peach and kaki) on the biochemical methane potential (BMP) in anaerobic co-digestion with pig slurry, focusing on the type of substrate and its inclusion level on the final substrate's mixture. The results presented in this PhD Thesis from the nutritional value assays indicate that the olive cakes and orange pulps tested can be potentially included in pig diets with associated changes in urine and faeces nutrients excretion that leads to modifications in the potential ammonia and BMP emissions from slurries. Concerning olive cake by-products, the nutritional value assay designed to test the crude (COC) and partially defatted (PDOC) olive cakes showed that they are appreciable sources of insoluble fibre but have limited energy value (11.2 and 7.4 MJ/kg DM for COC and PDOC respectively) and a low value as protein source. On the contrary, the dehydrated (DOP) and ensiled sun-dried (ESDOP) orange pulps tested are a relevant energy source (14.2 and 13.2 MJ/kg DM for DOP and ESDOP respectively) with added value in terms of SF concentration. With respect to the in vitro potential ammonia and BMP emissions assays, the by-products tested led to a decreased N excretion in urine and, in the case of the OC, increased DM excretion in faeces. The ammonia emission per kg of slurry decreased with the inclusion of olive cake and orange pulp, whereas the BMP per animal and per day was negatively affected by the inclusion of olive cake obtaining higher BMP with these by-products. Regarding the performance assays, the PDOC and the DOP may be included in balanced pig diets at rates of up to 120 and 240 g/kg respectively, without negative effects in the case of PDOC and minor effects for DOC on growth performance, body composition and carcass quality traits. Contrary to what was expected, the inclusion of PDOC and DOP did not affect microbial counts nor excreta volume, composition and global gas emission from the slurry. Additionally, beneficial effects on subcutaneous fat were observed with the inclusion of PDOC, improving its oleic acid concentration. The anaerobic co-digestion of agricultural by-products and pig slurry improves the BMP from the mixture compared to only pig slurry anaerobic digestion. Higher BMP values were obtained with increasing addition of agricultural substrate, confirming the better performance of co-digestion systems at adequate inclusion levels. In fact, combinations with tomato, pepper and peach at inclusion level 3 (50% of VS) achieved the highest BMP. This resulted in an increase in BMP of 41% with tomato, 44% with pepper, 28% with peach and 12% with kaki. Vegetable substrates (pepper and tomato) showed higher lipid, protein, lignin and cellulose content than fruit substrates (kaki and peach).Ferrer Riera, P. (2021). Valorisation of Mediterranean agroindustrial by-products in pig production as feed and anaerobic co-digestion of slurry [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171747TESISCompendi

    EnCodecMAE: Leveraging neural codecs for universal audio representation learning

    Full text link
    The goal of universal audio representation learning is to obtain foundational models that can be used for a variety of downstream tasks involving speech, music or environmental sounds. To approach this problem, methods inspired by self-supervised models from NLP, like BERT, are often used and adapted to audio. These models rely on the discrete nature of text, hence adopting this type of approach for audio processing requires either a change in the learning objective or mapping the audio signal to a set of discrete classes. In this work, we explore the use of EnCodec, a neural audio codec, to generate discrete targets for learning an universal audio model based on a masked autoencoder (MAE). We evaluate this approach, which we call EncodecMAE, on a wide range of audio tasks spanning speech, music and environmental sounds, achieving performances comparable or better than leading audio representation models.Comment: Submitted to ICASSP 202

    Teamwork Quality Prediction Using Speech-Based Features

    Get PDF
    This paper describes a novel protocol for annotating teamwork quality and related variables, based only on the speech signal. Our protocol was designed to annotate a Spanish version of the Objects Games corpus, a publicly available corpus that contains dialogues of people playing a collaborative computer game. The corpus was annotated by 4 raters, who achieved an Intra class Correlation Coefficient of 0.64 for the main teamwork quality metric. Using the resulting annotations, we developed a system for automatic prediction of the average teamwork quality across raters using features extracted from the conversations, reaching a coefficient of determination, R2 of 0.56. This result suggests that automatic prediction of teamwork quality from the speech signal of the teammates is a feasible task

    Partially defatted olive cake in finishing pig diets: implications on performance, faecal microbiota, carcass quality, slurry composition and gas emission

    Get PDF
    [EN] One of the key factors to improve swine production sustainability is the use of agro-industrial by-products in feeds, such as olive by-products. However, it is necessary to assess its effects on the overall production process, including the animal and the environment. With this aim, an experiment was conducted to determine the effects of including a partially defatted olive cake (PDOC) in pig diets on growth performance, faecal microbiota, carcass quality and gas emission from the slurry. Two finishing diets were formulated, a control (C) diet and a diet with PDOC included at 120 g/kg. Eighty finishing male pigs Duroc-Danbred x (Landrace x Large White) of 60.4 +/- 7.00 kg BW were divided between these two treatments. During the finishing period (60 to 110 kg BW, 55 days) average daily gain, average daily feed intake and feed conversion ratio were recorded. Faecal samples from the rectum of 16 animals per treatment were incubated for bacteria enumeration. At the end of finishing period, backfat thickness and loin depth (LD) were measured. Animals were slaughtered to obtain carcass weight and carcass composition parameters, and subcutaneous fat was sampled to analyse the fatty acid (FA) profile. In addition greenhouse gas and ammonia emissions were measured during pig slurry storage using the methodology of dynamic flux chambers. An initial slurry characterisation and biochemical methane potential (B-0) were also determined. No significant differences between treatments were found in performance, carcass quality and microbial counts with the exception of LD, which was lower in PDOC compared with C animals (45.5 v. 47.5 mm, SEM: 0.62; P = 0.020). The FA profile of the subcutaneous fat did not differ between treatments, but the monounsaturated FA (MUFA) concentration was higher and the polyunsaturated FA was lower in the animals fed PDOC (50.9 v. 48.3, SEM: 0.48, P < 0.001; 17.6 v. 19.3, SEM: 0.30, P < 0.001 in mg/100 g of Total FA, for PDOC and C animals, respectively). The initial pig slurry characterisation only showed differences in ADF concentration that was higher (P < 0.05) in the slurry from PDOC treatment. Regarding gas emission, slurries from both treatments emitted similar amounts of ammonia (NH3), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as B-0 values. The results obtained suggest that PDOC may be included in balanced pig diets at rates of up to 120 g/kg without negative effects on performance, carcass quality, gut microflora and slurry gas emission, while improving the MUFA concentration of subcutaneous fat.This project was funded by the Spanish Ministry of Science and Innovation (AGL2014-56653). Preliminary results from this work have been published in an abstract form (Ferrer et al., 2017). Acknowledgements are also expressed to DCOOP for providing PDCO.Ferrer Riera, P.; Calvet, S.; García-Rebollar, P.; De Blas, C.; Jiménez Belenguer, AI.; Hernández, P.; Piquer, O.... (2020). Partially defatted olive cake in finishing pig diets: implications on performance, faecal microbiota, carcass quality, slurry composition and gas emission. Animal. 14(2):426-434. https://doi.org/10.1017/S1751731119002040S426434142Abo Omar, J. M., Daya, R., & Ghaleb, A. (2012). Effects of different forms of olive cake on the performance and carcass quality of Awassi lambs. Animal Feed Science and Technology, 171(2-4), 167-172. doi:10.1016/j.anifeedsci.2011.11.002Alburquerque, J. (2004). Agrochemical characterisation of «alperujo», a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresource Technology, 91(2), 195-200. doi:10.1016/s0960-8524(03)00177-9Bach Knudsen, K. E., & Hansen, I. (1991). Gastrointestinal implications in pigs of wheat and oat fractions. British Journal of Nutrition, 65(2), 217-232. doi:10.1079/bjn19910082Beccaccia, A., Calvet, S., Cerisuelo, A., Ferrer, P., García-Rebollar, P., & De Blas, C. (2015). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing-finishing pigs. I. Influence of the inclusion of two levels of orange pulp and carob meal in isofibrous diets. Animal Feed Science and Technology, 208, 158-169. doi:10.1016/j.anifeedsci.2015.07.008Calvet, S., Hunt, J., & Misselbrook, T. H. (2017). Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia. Biosystems Engineering, 159, 121-132. doi:10.1016/j.biosystemseng.2017.04.011Cámara, L., Berrocoso, J. D., Coma, J., López-Bote, C. J., & Mateos, G. G. (2016). Growth performance and carcass quality of crossbreds pigs from two Pietrain sire lines fed isoproteic diets varying in energy concentration. Meat Science, 114, 69-74. doi:10.1016/j.meatsci.2015.12.013Canh, T. T., Verstegen, M. W., Aarnink, A. J., & Schrama, J. W. (1997). Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. Journal of Animal Science, 75(3), 700. doi:10.2527/1997.753700xCardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J., & Queipo-Ortuño, M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry, 24(8), 1415-1422. doi:10.1016/j.jnutbio.2013.05.001Cava, R., Ruiz, J., López-Bote, C., Martín, L., García, C., Ventanas, J., & Antequera, T. (1997). Influence of finishing diet on fatty acid profiles of intramuscular lipids, triglycerides and phospholipids in muscles of the Iberian pig. Meat Science, 45(2), 263-270. doi:10.1016/s0309-1740(96)00102-7Cerisuelo, A., Castelló, L., Moset, V., Martínez, M., Hernández, P., Piquer, O., … Lainez, M. (2010). The inclusion of ensiled citrus pulp in diets for growing pigs: Effects on voluntary intake, growth performance, gut microbiology and meat quality. Livestock Science, 134(1-3), 180-182. doi:10.1016/j.livsci.2010.06.135Chamorro, S., Viveros, A., Alvarez, I., Vega, E., & Brenes, A. (2012). Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry, 133(2), 308-314. doi:10.1016/j.foodchem.2012.01.031De Blas, J. C., Rodriguez, C. A., Bacha, F., Fernandez, R., & Abad-Guamán, R. (2015). Nutritive value of co-products derived from olivecake in rabbit feeding. World Rabbit Science, 23(4), 255. doi:10.4995/wrs.2015.4036FAOSTAT, 2017. Production quantities by country, 2014. Food and Agriculture Organization of the United Nations. Retrieved on 26 June 2018, from http://faostat3.fao.org/home/FEDNA 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos, 3ª edición. (ed. C de Blas, GG Mateos, P García-Rebollar), pp 310–311. Fundación Española para el Desarrollo de la Nutrición Animal, Madrid, Spain.Ferrer P, Calvet S, Piquer O, García-Rebollar P, de Blas C, Bonet J, Coma J and Cerisuelo A 2017. Olive cake in pigs feeding: effects on growth performance, carcass quality and gas emission from slurry. In Proceedings of the 2nd World Conference of Innovative Animal Nutrition and Feeding, 18–20 October 2017, Budapest, Hungary, pp. 63–64.Ferrer, P., García-Rebollar, P., Cerisuelo, A., Ibáñez, M. A., Rodríguez, C. A., Calvet, S., & De Blas, C. (2018). Nutritional value of crude and partially defatted olive cake in finishing pigs and effects on nitrogen balance and gaseous emissions. Animal Feed Science and Technology, 236, 131-140. doi:10.1016/j.anifeedsci.2017.12.014García-González, D. L., & Aparicio, R. (2010). Research in Olive Oil: Challenges for the Near Future. Journal of Agricultural and Food Chemistry, 58(24), 12569-12577. doi:10.1021/jf102735nGonzález, E., Hernández-Matamoros, A., & Tejeda, J. F. (2012). Two by-products of the olive oil extraction industry as oleic acid supplement source for Iberian pigs: effect on the meat’s chemical composition and induced lipoperoxidation. Journal of the Science of Food and Agriculture, 92(12), 2543-2551. doi:10.1002/jsfa.5669Jarrett, S., & Ashworth, C. J. (2018). The role of dietary fibre in pig production, with a particular emphasis on reproduction. Journal of Animal Science and Biotechnology, 9(1). doi:10.1186/s40104-018-0270-0Joven, M., Pintos, E., Latorre, M. A., Suárez-Belloch, J., Guada, J. A., & Fondevila, M. (2014). Effect of replacing barley by increasing levels of olive cake in the diet of finishing pigs: Growth performances, digestibility, carcass, meat and fat quality. Animal Feed Science and Technology, 197, 185-193. doi:10.1016/j.anifeedsci.2014.08.007Leouifoudi, I., Harnafi, H., & Zyad, A. (2015). Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities. Advances in Pharmacological Sciences, 2015, 1-11. doi:10.1155/2015/714138Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi:10.1016/0377-8401(95)00837-3Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Research International, 2015, 1-18. doi:10.1155/2015/905215Mas, G., Llavall, M., Coll, D., Roca, R., Diaz, I., Gispert, M., … Realini, C. E. (2010). Carcass and meat quality characteristics and fatty acid composition of tissues from Pietrain-crossed barrows and gilts fed an elevated monounsaturated fat diet. Meat Science, 85(4), 707-714. doi:10.1016/j.meatsci.2010.03.028Molina-Alcaide, E., & Yáñez-Ruiz, D. R. (2008). Potential use of olive by-products in ruminant feeding: A review. Animal Feed Science and Technology, 147(1-3), 247-264. doi:10.1016/j.anifeedsci.2007.09.021Morazán, H., Alvarez-Rodriguez, J., Seradj, A. R., Balcells, J., & Babot, D. (2015). Trade-offs among growth performance, nutrient digestion and carcass traits when feeding low protein and/or high neutral-detergent fiber diets to growing-finishing pigs. Animal Feed Science and Technology, 207, 168-180. doi:10.1016/j.anifeedsci.2015.06.003O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511-1521. doi:10.2527/jas.2006-491Pieper, R., Vahjen, W., & Zentek, J. (2015). Dietary fibre and crude protein: impact on gastrointestinal microbial fermentation characteristics and host response. Animal Production Science, 55(12), 1367. doi:10.1071/an15278Rosenvold, K., & Andersen, H. J. (2003). Factors of significance for pork quality—a review. Meat Science, 64(3), 219-237. doi:10.1016/s0309-1740(02)00186-9Serra, A., Conte, G., Giovannetti, M., Casarosa, L., Agnolucci, M., Ciucci, F., … Mele, M. (2017). Olive Pomace in Diet Limits Lipid Peroxidation of Sausages from Cinta Senese Swine. European Journal of Lipid Science and Technology, 120(1), 1700236. doi:10.1002/ejlt.201700236Torres-Pitarch, A., Moset, V., Ferrer, P., Cambra-López, M., Hernández, P., Coma, J., … Cerisuelo, A. (2014). The inclusion of rapeseed meal in fattening pig diets, as a partial replacer of soybean meal, alters nutrient digestion, faecal composition and biochemical methane potential from faeces. Animal Feed Science and Technology, 198, 215-223. doi:10.1016/j.anifeedsci.2014.09.017Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508-514. doi:10.1042/bj0570508Zhao, P. Y., Wang, J. P., & Kim, I. H. (2013). Evaluation of dietary fructan supplementation on growth performance, nutrient digestibility, meat quality, fecal microbial flora, and fecal noxious gas emission in finishing pigs. Journal of Animal Science, 91(11), 5280-5286. doi:10.2527/jas.2012-539

    Co-digestión anaerobia de purines de cerdo: una alternativa de gestión sostenible

    Full text link
    [ES] Un equipo de investigadores del Instituto de Ciencia y Tecnología Animal (ICTA), perteneciente a la Universitat Politècnica de València (UPV), junto con el Centro de Investigación y Tecnología Animal (CITA), perteneciente al Instituto Valenciano de Investigaciones Agrarias (IVIA), ha desarrollado un proyecto de valorización energética de purines de cerdo y subproductos agrícolas mediante co-digestión anaerobia.Moset, V.; Ferrer Riera, P.; Cambra López, M.; Cerisuelo, A.; Torres Salvador, AG. (2011). Co-digestión anaerobia de purines de cerdo: una alternativa de gestión sostenible. RETEMA: Revista Técnica de Medio Ambiente. 153:40-45. http://hdl.handle.net/10251/65120S404515

    Sobre la variabilidad infraespecífica de Sideritis fruticulosa Pourr. (Labiatae)

    Get PDF
    The taxonomy, nomenclature, chorology and phytosociology of Sideritis fruticulosa (Labiatae) are reviewed. We propose the division of this taxon in four subspecies (subsp. fruticulosa, subsp. cavanillesii, subsp. ferreriana, and subsp. tarraconensis), one of which (subsp. ferreriana) is described in this paper. Besides, a new variety is proposed: S. fruticulosa subsp. cavanillesii var. illerdensis. The name Sideritis ×llenasii is lectotypifie

    Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

    Get PDF
    [EN] This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2 above 0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production.This research was supported by the Spanish Ministerio de Ciencia e Innovacion (project AGL2011-30023) and the Valencian Government (Project ACOMP/2013/118).Beccaccia, A.; Ferrer Riera, P.; Ibáñez, MÁ.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, CD.... (2015). Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms. Spanish Journal of Agricultural Research. 13(1):1-15. https://doi.org/10.5424/sjar/2015131-6575S115131Aarnink, A. J. A., & Verstegen, M. W. A. (2007). Nutrition, key factor to reduce environmental load from pig production. Livestock Science, 109(1-3), 194-203. doi:10.1016/j.livsci.2007.01.112Alvarez-Rodriguez, J., Hermida, B., Parera, J., Morazán, H., Balcells, J., & Babot, D. (2013). The influence of drinker device on water use and fertiliser value of slurry from growing-finishing pigs. Animal Production Science, 53(4), 328. doi:10.1071/an12136Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3AOAC, 2000. Official methods of analysis, 15th ed. (Harwitte W, Ed.). Association of Official Analytical Chemists. Washington, USA.APHA, 2005. Standard methods for the examination of water and wastewater. Centennial Edition, Baltimore, MD, USA.Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Applied Spectroscopy, 43(5), 772-777. doi:10.1366/0003702894202201Bietresato, M., & Sartori, L. (2013). Technical aspects concerning the detection of animal waste nutrient content via its electrical characteristics. Bioresource Technology, 132, 127-136. doi:10.1016/j.biortech.2012.12.184Bindelle, J., Buldgen, A., Delacollette, M., Wavreille, J., Agneessens, R., Destain, J. P., & Leterme, P. (2009). Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria123. Journal of Animal Science, 87(2), 583-593. doi:10.2527/jas.2007-0717Box GEP, Cox DR, 1964. An analysis of transformations. J R Stat Soc B 26: 211-246.Canh TT, Verstegen MWA, Aarnink AJA, Schrama JW, 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and faeces of fattening pigs. J Anim Sci 75: 700-706.Canh, T. ., Aarnink, A. J. ., Schutte, J. ., Sutton, A., Langhout, D. ., & Verstegen, M. W. . (1998). Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livestock Production Science, 56(3), 181-191. doi:10.1016/s0301-6226(98)00156-0Chen, L., Xing, L., Han, L., & Yang, Z. (2009). Evaluation of physicochemical models for rapidly estimating pig manure nutrient content. Biosystems Engineering, 103(3), 313-320. doi:10.1016/j.biosystemseng.2009.04.007Conn, K. L., Topp, E., & Lazarovits, G. (2007). Factors Influencing the Concentration of Volatile Fatty Acids, Ammonia, and Other Nutrients in Stored Liquid Pig Manure. Journal of Environment Quality, 36(2), 440. doi:10.2134/jeq2006.0222Dinuccio, E., Berg, W., & Balsari, P. (2008). Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 42(10), 2448-2459. doi:10.1016/j.atmosenv.2007.12.022Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., & Cacho Rivero, J. A. (2013). Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresource Technology, 128, 252-258. doi:10.1016/j.biortech.2012.10.044FEDNA, 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos, 3rd ed. (de Blas C, Mateos GG, García-Rebollar P, Eds). Fundación Espa-ola para el Desarrollo de la Nutrición Animal, Madrid, Spain, 502 pp.Galassi, G., Colombini, S., Malagutti, L., Crovetto, G. M., & Rapetti, L. (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Animal Feed Science and Technology, 161(3-4), 140-148. doi:10.1016/j.anifeedsci.2010.08.009Halas, D., Hansen, C. F., Hampson, D. J., Kim, J.-C., Mullan, B. P., Wilson, R. H., & Pluske, J. R. (2010). Effects of benzoic acid and inulin on ammonia–nitrogen excretion, plasma urea levels, and the pH in faeces and urine of weaner pigs. Livestock Science, 134(1-3), 243-245. doi:10.1016/j.livsci.2010.06.153Hayes, E. ., Leek, A. B. ., Curran, T. ., Dodd, V. ., Carton, O. ., Beattie, V. ., & O’Doherty, J. . (2004). The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresource Technology, 91(3), 309-315. doi:10.1016/s0960-8524(03)00184-6Hernández, F., Martínez, S., López, C., Megías, M. D., López, M., & Madrid, J. (2011). Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal, 5(8), 1290-1298. doi:10.1017/s1751731111000115Huang, G., Han, L., & Liu, X. (2007). Rapid Estimation of the Composition of Animal Manure Compost by near Infrared Reflectance Spectroscopy. Journal of Near Infrared Spectroscopy, 15(6), 387-394. doi:10.1255/jnirs.745Jarret, G., Cerisuelo, A., Peu, P., Martinez, J., & Dourmad, J.-Y. (2012). Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agriculture, Ecosystems & Environment, 160, 51-58. doi:10.1016/j.agee.2011.05.029Jørgensen, H. (2007). Methane emission by growing pigs and adult sows as influenced by fermentation. Livestock Science, 109(1-3), 216-219. doi:10.1016/j.livsci.2007.01.142Jouany JP, 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Alimen 2: 131-144.Kerr BJ, Ziemer SL, Trabue SL, Crouse JD, Parkin TB, 2006. Manure composition of swine as affected by dietary protein and cellulose concentrations. J Anim Sci 84: 1584-1592.Kreuzer, M., Wittmann, M., Gerdemann, M. M., Hanneken, H., Abel, H., & Machmuller, A. (1999). Re-examination of the metabolizable energy contents of various rations containing different types and levels of bacterially fermentable substrates in digestibility experiments with growing pigs. Journal of Animal Physiology and Animal Nutrition, 82(1), 33-49. doi:10.1046/j.1439-0396.1999.00218.xLicitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi:10.1016/0377-8401(95)00837-3Liu, Z., Powers, W., & Liu, H. (2013). Greenhouse gas emissions from swine operations: Evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis1. Journal of Animal Science, 91(8), 4017-4032. doi:10.2527/jas.2012-6147Malley, D. F., Yesmin, L., & Eilers, R. G. (2002). Rapid Analysis of Hog Manure and Manure-amended Soils Using Near-infrared Spectroscopy. Soil Science Society of America Journal, 66(5), 1677. doi:10.2136/sssaj2002.1677Martinez-Suller L, Provolo G, Carton OT, Brennan D, Kirwan L, Richards KG, 2010. The composition of dirty water on dairy farms in Ireland. Irish J Agr Food Res 49: 67-80.Mertens DR, 2002. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. J AOAC Int 85: 1217-1240.Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, 26(5), 485-495. doi:10.1016/j.biombioe.2003.08.008Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological Degradation and Greenhouse Gas Emissions during Pre-Storage of Liquid Animal Manure. Journal of Environment Quality, 33(1), 27. doi:10.2134/jeq2004.2700Montalvo, G., Morales, J., Pineiro, C., Godbout, S., & Bigeriego, M. (2013). Effect of different dietary strategies on gas emissions and growth performance in post- weaned piglets. Spanish Journal of Agricultural Research, 11(4), 1016. doi:10.5424/sjar/2013114-3185Moral, R., Perez-Murcia, M. D., Perez-Espinosa, A., Moreno-Caselles, J., Paredes, C., & Rufete, B. (2008). Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, 28(2), 367-371. doi:10.1016/j.wasman.2007.01.009Pereira, J., Misselbrook, T. H., Chadwick, D. R., Coutinho, J., & Trindade, H. (2012). Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosystems Engineering, 112(2), 138-150. doi:10.1016/j.biosystemseng.2012.03.011Portejoie, S., Dourmad, J. Y., Martinez, J., & Lebreton, Y. (2004). Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livestock Production Science, 91(1-2), 45-55. doi:10.1016/j.livprodsci.2004.06.013Reeves, J. B. (2007). The present status of «quick tests» for on-farm analysis with emphasis on manures and soil: What is available and what is lacking? Livestock Science, 112(3), 224-231. doi:10.1016/j.livsci.2007.09.009Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy. Biosystems Engineering, 91(4), 393-402. doi:10.1016/j.biosystemseng.2005.05.001Sánchez, M., & González, J. L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresource Technology, 96(10), 1117-1123. doi:10.1016/j.biortech.2004.10.002Shenk JS, Westerhaus MO, 1996. Calibration of ISI way. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 198-202.Snoek, D. J. W., Stigter, J. D., Ogink, N. W. M., & Groot Koerkamp, P. W. G. (2014). Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles. Biosystems Engineering, 121, 12-24. doi:10.1016/j.biosystemseng.2014.02.003Soares, M., & Lopez-Bote, C. . (2002). Effects of dietary lecithin and fat unsaturation on nutrient utilisation in weaned piglets. Animal Feed Science and Technology, 95(3-4), 169-177. doi:10.1016/s0377-8401(01)00324-8Sørensen, L. K., Sørensen, P., & Birkmose, T. S. (2007). Application of Reflectance Near Infrared Spectroscopy for Animal Slurry Analyses. Soil Science Society of America Journal, 71(4), 1398. doi:10.2136/sssaj2006.330Tamminga, S. (2003). Pollution due to nutrient losses and its control in European animal production. Livestock Production Science, 84(2), 101-111. doi:10.1016/j.livprodsci.2003.09.008Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg, M. R., & Jiang, X. Y. (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. doi:10.1016/j.biortech.2011.07.026Triolo, J. M., Ward, A. J., Pedersen, L., Løkke, M. M., Qu, H., & Sommer, S. G. (2014). Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Applied Energy, 116, 52-57. doi:10.1016/j.apenergy.2013.11.006Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2Van Soest PJ, 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell Univ Press, USA, 476 pp.Vedrenne, F., Béline, F., Dabert, P., & Bernet, N. (2008). The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 99(1), 146-155. doi:10.1016/j.biortech.2006.11.043Von Heimendahl, E., Breves, G., & Abel, H. (2010). Fiber-related digestive processes in three different breeds of pigs12. Journal of Animal Science, 88(3), 972-981. doi:10.2527/jas.2009-2370Williams PC, Sobering D, 1996. How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 185-188.Williams PC, 2001. Implementation of near-infrared technology. In: Near-infrared technology in the agricultural and food industries, 2nd ed (Williams PC, Norris K, Eds.). Am Assoc Cereal Chemists Inc., St. Paul, MN, USA, pp: 145-169.Yagüe, M. R., Bosch-Serra, À. D., & Boixadera, J. (2012). Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosystems Engineering, 111(2), 206-216. doi:10.1016/j.biosystemseng.2011.11.013W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, & J. Hattey. (2005). APPLICATION OF NEAR-INFRARED REFLECTANCE SPECTROSCOPY FOR DETERMINATION OF NUTRIENT CONTENTS IN LIQUID AND SOLID MANURES. Transactions of the ASAE, 48(5), 1911-1918. doi:10.13031/2013.2000
    corecore