867 research outputs found

    Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases

    Full text link
    This is a continuation of the papers [4] of Bleher and Fokin and [5] of Bleher and Liechty, in which the large nn asymptotics is obtained for the partition function ZnZ_n of the six-vertex model with domain wall boundary conditions in the disordered and ferroelectric phases, respectively. In the present paper we obtain the large nn asymptotics of ZnZ_n on the critical line between these two phases.Comment: 22 pages, 6 figures, to appear in the Journal of Statistical Physic

    The arctic curve of the domain-wall six-vertex model

    Full text link
    The problem of the form of the `arctic' curve of the six-vertex model with domain wall boundary conditions in its disordered regime is addressed. It is well-known that in the scaling limit the model exhibits phase-separation, with regions of order and disorder sharply separated by a smooth curve, called the arctic curve. To find this curve, we study a multiple integral representation for the emptiness formation probability, a correlation function devised to detect spatial transition from order to disorder. We conjecture that the arctic curve, for arbitrary choice of the vertex weights, can be characterized by the condition of condensation of almost all roots of the corresponding saddle-point equations at the same, known, value. In explicit calculations we restrict to the disordered regime for which we have been able to compute the scaling limit of certain generating function entering the saddle-point equations. The arctic curve is obtained in parametric form and appears to be a non-algebraic curve in general; it turns into an algebraic one in the so-called root-of-unity cases. The arctic curve is also discussed in application to the limit shape of qq-enumerated (with 0<q40<q\leq 4) large alternating sign matrices. In particular, as q0q\to 0 the limit shape tends to a nontrivial limiting curve, given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction

    A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    Full text link
    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, "cloning" the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.Comment: Correspondig Author: C. Rubbia (E-mail: [email protected]), 33 pages, 11 figure

    Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor

    Get PDF
    We report the calculation of the interspecies scattering length for the sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the singlet X1Σ+X^1\Sigma^+ and triplet a3Σ+a^3\Sigma^+ ground states of the NaRb molecule, and calculate the singlet and triplet scattering lengths asa_{s} and ata_{t} for the isotopomers 23^{23}Na87^{87}Rb and 23^{23}Na85^{85}Rb. Using these values, we assess the prospects for producing a stable two-species Bose-Einstein condensate in the Na-Rb system.Comment: v2: report correct units in Table captions, fix error in conclusions for 23^{23}Na85^{85}Rb TBEC. Otherwise, more concise presentation, typos fixed. 6 pages, 1 figur

    A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS

    Get PDF
    The OPERA collaboration has claimed evidence of superluminal {\nu}{_\mu} propagation between CERN and the LNGS. Cohen and Glashow argued that such neutrinos should lose energy by producing photons and e+e- pairs, through Z0 mediated processes analogous to Cherenkov radiation. In terms of the parameter delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For this value of \delta a very significant deformation of the neutrino energy spectrum and an abundant production of photons and e+e- pairs should be observed at LNGS. We present an analysis based on the 2010 and part of the 2011 data sets from the ICARUS experiment, located at Gran Sasso National Laboratory and using the same neutrino beam from CERN. We find that the rates and deposited energy distributions of neutrino events in ICARUS agree with the expectations for an unperturbed spectrum of the CERN neutrino beam. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction for a weak current analog to Cherenkov radiation. In particular no superluminal Cherenkov like e+e- pair or gamma emission event has been directly observed inside the fiducial volume of the "bubble chamber like" ICARUS TPC-LAr detector, setting the much stricter limit of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due to the observations from the SN1987A.Comment: 17 pages, 6 figure

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure

    Minimally invasive versus open pancreatoduodenectomy for pancreatic and peri-ampullary neoplasm (DIPLOMA-2):study protocol for an international multicenter patient-blinded randomized controlled trial

    Get PDF
    Background: Minimally invasive pancreatoduodenectomy (MIPD) aims to reduce the negative impact of surgery as compared to open pancreatoduodenectomy (OPD) and is increasingly becoming part of clinical practice for selected patients worldwide. However, the safety of MIPD remains a topic of debate and the potential shorter time to functional recovery needs to be confirmed. To guide safe implementation of MIPD, large-scale international randomized trials comparing MIPD and OPD in experienced high-volume centers are needed. We hypothesize that MIPD is non-inferior in terms of overall complications, but superior regarding time to functional recovery, as compared to OPD. Methods/design: The DIPLOMA-2 trial is an international randomized controlled, patient-blinded, non-inferiority trial performed in 14 high-volume pancreatic centers in Europe with a minimum annual volume of 30 MIPD and 30 OPD. A total of 288 patients with an indication for elective pancreatoduodenectomy for pre-malignant and malignant disease, eligible for both open and minimally invasive approach, are randomly allocated for MIPD or OPD in a 2:1 ratio. Centers perform either laparoscopic or robot-assisted MIPD based on their surgical expertise. The primary outcome is the Comprehensive Complication Index (CCI®), measuring all complications graded according to the Clavien-Dindo classification up to 90 days after surgery. The sample size is calculated with the following assumptions: 2.5% one-sided significance level (α), 80% power (1-β), expected difference of the mean CCI® score of 0 points between MIPD and OPD, and a non-inferiority margin of 7.5 points. The main secondary outcome is time to functional recovery, which will be analyzed for superiority. Other secondary outcomes include post-operative 90-day Fitbit™ measured activity, operative outcomes (e.g., blood loss, operative time, conversion to open surgery, surgeon-reported outcomes), oncological findings in case of malignancy (e.g., R0-resection rate, time to adjuvant treatment, survival), postoperative outcomes (e.g., clinically relevant complications), healthcare resource utilization (length of stay, readmissions, intensive care stay), quality of life, and costs. Postoperative follow-up is up to 36 months. Discussion: The DIPLOMA-2 trial aims to establish the safety of MIPD as the new standard of care for this selected patient population undergoing pancreatoduodenectomy in high-volume centers, ultimately aiming for superior patient recovery. Trial registration: ISRCTN27483786. Registered on August 2, 2023.</p

    Exact solution of the six-vertex model with domain wall boundary conditions. Antiferroelectric phase

    Full text link
    We obtain the large nn asymptotics of the partition function ZnZ_n of the six-vertex model with domain wall boundary conditions in the antiferroelectric phase region, with the weights a=\sinh(\ga-t), b=\sinh(\ga+t), c=\sinh(2\ga), |t|<\ga. We prove the conjecture of Zinn-Justin, that as nn\to\infty, Z_n=C\th_4(n\om) F^{n^2}[1+O(n^{-1})], where \om and FF are given by explicit expressions in \ga and tt, and th4(z)\th_4(z) is the Jacobi theta function. The proof is based on the Riemann-Hilbert approach to the large nn asymptotic expansion of the underlying discrete orthogonal polynomials and on the Deift-Zhou nonlinear steepest descent method.Comment: 69 pages, 10 figure

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented
    corecore