14 research outputs found

    Gramicidin S derivatives containing cis- and trans-morpholine amino acids (MAAs) as turn mimetics

    No full text
    The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D-Phe-Pro two-residue turn motifs in the rigid cyclic -hairpin structure of GS was replaced with morpholine amino acids (MAA 2-5), differing in stereochemistry and length of the side-chain. The conformational properties of the thus obtained GS analogues (6-9) was assessed by using NMR spectroscopy and X-ray crystallography, and correlated with their biological properties (antimicrobial and hemolytic activity). We show that compound 8, containing the dipeptide isostere trans-MAA 4, has an apparent high structural resemblance with GS and that its antibacterial activity against a panel of Gram positive and -negative bacterial strains is better than the derivatives 6, 7 and 9

    Gramicidin S derivatives containing cis- and trans-morpholine amino acids (MAAS) as turn mimetics

    No full text
    The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D-Phe-Pro two-residue turn motifs in the rigid cyclic β-hairp0in structure of GS was replaced with morpholine amino acids (MAA 2-5), differing in stereochemistry and length of the side-chain. The conformational properties of the thus obtained GS analogues (6-9) was assessed by using NMR spectroscopy and X-ray crystallography, and correlated with their biological properties (antimicrobial and hemolytic activity). We show that compound 8, containing the dipeptide isostere trans-MAA 4, has an apparent high structural resemblance with GS and that its antibacterial activity against a panel of Gram positive and -negative bacterial strains is better than the derivatives 6, 7 and 9. © 2010 Wiley-VCH Verlag GmbH & Co. KGa
    corecore