74 research outputs found

    Use of raw and acidified biochars as constituents of growth media for forest seedling production

    Full text link
    [EN] In plant nurseries devoted to the propagation of shrubs and trees for landscaping, gardening or forestry it is first concern to produce robust seedlings which resist the stress of transplanting to soil. The selection of appropriate growth media is crucial. Biochar, the product of pyrolysis of organic matter, has been suggested as a new organic amendment for soil or for soilless growth media. Biochar is usually strongly alkaline. We studied the possibility of acidifying biochar with nitric and phosphoric acids. The effects of raw and acidified biochars in peat-based substrates on rooting and growth of cuttings of Rosmarinus officinalis and in sandy soil-based substrates on growth of Phillyrea angustifolia seedlings were compared. The physical and chemical characteristics of the growth media, and the growth and nutrient content of seedlings were analysed. Results showed that biochar acidification with nitric and phosphoric acids improves the pH and enriches the biochar with N and P without excessively increasing electrical conductivity. However, a column experiment showed that nitrate was readily leached whilst phosphate was tightly retained by biochar, which questioned the practical availability of these nutrients to plants. The agronomical assays showed that both raw biochar and acidified biochar improved rooting and growth of Rosmarinus cuttings. In Phillyrea, however, the acidified biochar did not affect plant growth whilst the raw biochar gave satisfactory results both for shoot and root growth. Results led to the conclusion that biochar without further treatment might be successfully used as growth medium constituent, even at large proportions, both in organic and in mineral substrates.We would like to thank L Albufera Natural Park and José Almudever from TENISPLANT S.L. for providing us with the plant material and for the use of their premises. We also would like to thank student Mauro Payá for his valuable technical assistance.Fornes Sebastiá, F.; Belda Navarro, RM. (2019). Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests. 50(6):1063-1086. https://doi.org/10.1007/s11056-019-09715-yS10631086506Abad M, Noguera P, Bures S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Biores Technol 77:197–200Abad M, Fornes F, Carrión C, Noguera V, Noguera P, Maquieira A, Puchades R (2005) Physical properties of various coconut coir dusts compared to peat. HortScience 40:2138–2144Akhtar SS, Andersen MN, Liu F (2014) Biochar enhances yield and quality of tomato under reduced irrigation. Agric Water Manag 138:37–44Alexander PD, Bragg NC, Meade R, Padelopoulos G, Watts O (2008) Peat in horticulture and conservation: the UK response to a changing world. Mires Peat 3:1–10Altland JE, Locke JC (2012) Biochar affects macronutrient leaching from a soilless substrate. HortScience 47:1136–1140Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18Bargmann I, Rilling MC, Buss W, Kruse A, Kuecke M (2013) Hydrocahr and biochar effects on germination of spring barley. J Agron Crop Sci 199:360–373Bargmann I, Martens R, Rilling MC, Kruse A, Kücke M (2014) Hydrochar amendment promotes microbial immobilization of mineral nitrogen. J Plant Nutr Soil Sci 177:59–67Belda RM, Mendoza-Hernández D, Fornes F (2013) Nutrient-rich compost versus nutrient-poor vermicomposts as growth media for ornamental plant production. J Plant Nutr Soil Sci 176:827–835Belda RM, Lidón A, Fornes F (2016) Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Ind Crops Prod 94:132–142Bigelow CA, Bowman DC, Cassel DK (2001) Nitrogen leaching in sand-based rootzones amended with inorganic soil amendments and sphagnum peat. J Am Soc Hort Sci 126:151–156Blok C, De Kreij C, Baas R, Weber G (2008) Analytical methods used in soilless cultivation. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, LondonBunt AC (1988) Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants, 2nd edn. Unwin Hyman, LondonCarmona E, Abad M (2008) Aplicación del compost en viveros y semilleros. In: Moreno J, Moral R (eds) Compostaje. Ed Mundi-Prensa, Madrid, pp 397–424Carrión C, García de la Fuente R, Fornes F, Puchades R, Abad M (2008) Acidifying compost from vegetable crop wastes to prepare growing media for containerized crops. Compost Sci Util 16:20–29Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan, London, pp 67–84Cho MS, Meng L, Song JH, Han SH, Bae K, Park BB (2017) The effects of biochars on the growth of Zelkova serrata seedlings in a containerized seedling production system. For Sci Technol 13:25–30Cleary J, Roulet NT, Moore TR (2005) Greenhouse gas emissions from Canadian peat extraction, 1990–2000: a life-cycle analysis. Ambio 34:456–461Di Lonardo S, Baronti S, Primo Vaccari F, Albanese L, Battista P, Miglietta F, Bacci L (2017) Biochar-based nursery substrates: the effect of peat substitution on reduced salinity. Urban For Urban Green 23:27–34Doan TT, Ngo PT, Rumpel C, Nguyen BV, Jouquet P (2013) Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic 160:148–154Dumroese RK, Pinto JR, Heiskanen J, Tervahauta A, McBurney KG, Page-Dumroese DS, Englund K (2018) Biochar can be a suitable replacement for sphagnum peat in nursery production of Pinus ponderosa seedlings. Forests 9:232. https://doi.org/10.3390/f9050232Dunlop SJ, Camps-Arbestain M, Bishop PA, Wargent JJ (2015) Closing the loop: use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. HortScience 50:1572–1581EN- European Standards. Soil improvers and growing media. European Committee for Standardization (CEN), Brussels, Belgium [EN 13037 (1999) Determination of pH pp 11] [EN 13038 (1999) Determination of Electrical Conductivity pp 13] [EN 13041 (1999) Determination of Physical Properties. Dry Bulk Density, Air Volume, Water Volume, Shrinkage Value and Total Pore Space pp 25] [EN 13652 (2001) Extraction of Water Soluble Nutrients and Elements pp 19] [EN 15428 (2007) Determination of Particle Size Distribution pp 21]Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370:190–206Fornes F, Belda RM (2017) Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. J Environ Manag 191:237–243Fornes F, Belda RM (2018) Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Sci Agric 75:304–312Fornes F, Belda RM, Carrión C, Noguera V, García-Agustín P, Abad M (2007) Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Sci Hotic 113:52–59Fornes F, Carrión C, García de la Fuente R, Puchades R, Abad M (2010) Leaching composted lignocellulosic wastes to prepare container media: feasibility and environmental concerns. J Environ Manag 91:1747–1755Fornes F, Mendoza-Hernández D, Belda RM (2013) Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish J Agric Res 11:518–528Fornes F, Belda RM, Lidón A (2015) Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. J Clean Prod 86:40–48Fornes F, Belda RM, Fernández de Córdova P, Cebolla-Cornejo J (2017) Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. J Sci Food Agric 97:3675–3684Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H (2014) Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One 9:e113888Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102:623–633Gastón A, Soriano C, Gómez-Miguel V (2009) Lithologic data improve plant species distribution models based on coarse-grained occurrence data. Investigación Agraria: Sistemas y Recursos Forestales 18:42–49Gucci R, Aronne G, Lombardini L, Tattiani M (1997) Salinity tolerance of Phillyrea species. New Phytol 135:227–234Gwenzi W, Nyambishi TJ, Chaukura N, Mapope N (2018) Synthesis and nutrient release patterns of a biochar-based N-P–K slow-release fertilizer. Int J Environ Sci Technol 15:405–414Haase DL, Rose R (1995) Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments. For Sci 41:54–66Haefele SM, Yonboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Konoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res 121:430–440Harfouche A, Baoune N, Merazga H (2007) Main and interaction effects of factors on softwood cutting of white poplar (Populus alba L.). Silvae Genet 56:287–294Headlee WL, Brewer CE, Hall RB (2014) Biochar as substitute for vermiculite in potting mix for hybrid poplar. Bioenerg Res 7:120–131Joseph S, Kammann CI, Shepherd JG, Conte P, Schmidt HP, Hagemann N, Rich AM, Marjo CE, Allen J, Munroe P, Mitchel DRG, Donne S, Spokas K, Graber ER (2018) Microstructural and associated chemical changes during the composting of a high temperature biochar: mechanisms for nitrate, phosphate and other nutrient retention and release. Sci Total Environ 618:1210–1223Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442Lee JA (1998) The calcicole—calcifuge problem revisited. In: Callow JA (ed) Advances in botanical research. Academic Press Haranhan, LA, pp 1–30Lehmann J, Joseph S (2009) Biochar for enivronmental management: an Introduction. In: Lehmann J, Joseph S (eds) Biochar for enivronmental management. Science and Technology, Earthscan, London, pp 1–12Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizaõ FJ, Petersen J, Neves G (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730Lucia De, Cristiano G, Vecchietti L, Bruno L (2013) Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban Forest Urban Green 12:537–545Maher M, Prasad M, Raviv M (2008) Organic soilless media components. In: Raviv M, Lieth JH (eds) Soilless culture: theory and practice. Elsevier, London, pp 459–504Malby E, Proctor MCF (1996) Peatlands in biosphere. Peatlands: their nature and role in the biosphere. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyskä, pp 11–19Maronek DM, Studebaker D, Oberly B (1985) Improving media aeration in liner and container production. Comb Proc Int Plant Prop Soc 35:591–597Martikainen PJ (1996) Peatlands in biosphere. The fluxes of greenhouse gases CO2, CH4 and N2O in northern peatlands. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyskä, pp 29–36Mendez A, Paz-Ferreiro J, Gil E, Gasco G (2015) The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci Hortic 193:225–230Mendoza-Hernández D, Fornes F, Belda RM (2014) Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Sci Hortic 178:192–202Mills HA, Jones JB Jr (1996) Plant analysis handbook II. A practical sampling, preparation, analysis, and interpretation guide. Micro Macro Publishing, AthensMukherjee A, Zimmerman AR (2013) Organic carbon and nutrient release from a range of laboratory produced biochars and biochar soil mixtures. Geoderma 193–194:122–130Ogaya R, Peñuelas J, Martínez-Vilalta J, Mangirón M (2003) Effect of droutgh on diameter increment of Querqus Ilex, Phillyrea latifolia and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manag 180:175–184Ojanen P, Minkkinen K, Penttilä T (2013) The current greenhouse gas impact of forestry-drained boreal peatlands. For Ecol Manag 289:201–208Omil B, Piñeiro V, Merino A (2013) Soil and tree responses to the application ofwood ash containing charcoal in two soils with contrasting properties. For Ecol Manag 295:199–212Otani T, Ae N (2001) Interspecific differences in the role of root exudates in phosphorous acquisition. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New perspectives. Springer, Tokio, pp 71–100Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature-and-duration-dependent rice staw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166Pérez-Bejarano A, Mataix-Solera J, Zornoza R, Guerrero C, Arcenegui V, Mataix-Beneyto J, Cano-Amat S (2010) Influence of plant species of physical, chemical and biological soil properties in a Mediterranean forest soil. Eur J For Res 129:15–24Peterson JC (1981) Modify your pH perspective. Flor Rev 169:34–35, 92 and 94Petruccelli R, Bonetti A, Traversi ML, Faraloni C, Valagussa M, Pozzi A (2015) Influence of biochar application on nutritional quality of tomato (Lycopersicon sculentum). Crop Past Sci 66:747–755Pryce S (1991) The peat alternatives manual. A guide for the professional horticulturist and landscaper. Friends of the Earth, LondonRandall PJ, Hayes JE, Hocking PJ, Richardson AE (2001) Root exudates in phosphorous acquisition by plants. In: Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition. New Perspectives. Springer, Tokio, pp 71–100Sáez JA, Belda RM, Bernal MP, Fornes F (2016) Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Ind Crops Prod 94:97–106Sanchís E, Rubio JL, Mansanet J (1986) Soils and vegetation in Mount Dehesa de la Albufera (Valencia) (in Spanish). Rev Agroquim Tecnol Alimentos 26:435–450Sarauer J, Coleman MD (2018) Biochar as a growing media component for containerized production 1 of Douglas-fir. Can J For Res 48:581–588Schmilevski G (2009) Growing medium constituents used in the EU. Acta Hortic 81:33–46Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989Tate HT, Page T (2018) Cutting propagation of Santalum austrocaledonicum: the effect of genotype, cutting source, cutting size, propagation medium, IBA and irradiance. New For 49:551–570Thomas SC, Gale N (2015) Biochar and forest restoration: a review and meta-analysis of tree growth responses. New For 46:931–946Xu X, Kan Y, Zhao L, Cao X (2016) Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ Pollut 213:533–540Yao C, Joseph S, Li L, Pan G, Lin Y, Munroe P, Pace B, Taherymoosavi S, Van Zwieten L, Thomas T, Nielsen S, Ye J, Donne S (2015) Developing more effective enhanced biochar fertilisers for improvement of pepper yield and quality. Pedosphere 25:703–712Zhang L, Sun X, Tian Y, Gong X (2014) Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci Hortic 176:70–7

    Changes in renal WT-1 expression preceding hypertension development

    Get PDF
    Background: Hypertension is a public health problem with mostly unknown causes, and where strong hereditary genetic alterations have not been fully elucidated. However, the use of experimental models has provided valuable information. Recent evidences suggest that alterations in key nephrogenic factors, such as Wilms' tumor 1 transcription factor (WT-1), could contribute to the development of hypertension. The aim of this paper is to evaluate the expression of WT-1 and related genes in the nephrogenic process in connection with the development of hypertension as well as the corresponding anatomical and functional correlation. Methods: Male spontaneously hypertensive and control rats were evaluated weekly from birth until week 8 of life. Their blood pressure was taken weekly using the tail-cuff blood pressure system. Weekly, 5 rats per group were sacrificed with a lethal injection of pentobarbital, and their kidneys were removed, decapsulated and weighed. The serum was collected for measuring biochemical parameters. The results were assessed using one-way analysis of variance for comparisons between groups. Results: The relationship between renal weight/total body weights was established, without significantly different values. These data were compared with apoptosis, fibrosis, number and size of the glomeruli. The elevation of systolic blood pressure was significant since week 6. Biochemical values differed slightly. Histology showed a slight increase in deposits of collagen fibers since week 4. Additionally, in kidney cortices, the expression of WT-1, heat shock protein 70 (Hsp70) and vitamin D receptors (VDR) decreased since week 4. Finally, we demonstrated ultrastructural damage to mitochondria since week 4. Conclusions: Our results would suggest an unprecedented link, possibly a regulatory mechanism, between WT-1 on nephrogenic alteration processes and their relationship with hypertension. Moreover, and previous to the increase in blood pressure, we demonstrated low expressions of WT-1, VDR and Hsp70 in kidneys from neonatal SHRs. If so, this may suggest that deregulation in the expression of WT-1 and its impact on nephrogenesis induction could be crucial in understanding the development and maintenance of hypertension.Fil: Mazzei, Luciana Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; ArgentinaFil: García, Isabel Mercedes. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; ArgentinaFil: Calvo, Juan Pablo. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; ArgentinaFil: Casarotto, Mariana. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; ArgentinaFil: Fornes, Miguel Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Abud, María Angélica. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; ArgentinaFil: Cuello Carrión, Fernando Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ferder, León. Universidad de Puerto Rico; Puerto RicoFil: Manucha, Walter Ariel Fernando. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    Biochar versus hydrochar as growth media constituents for ornamental plant cultivation

    Full text link
    [EN] Biochar and hydrochar have been proposed as novel materials for providing soilless growth media. However, much more knowledge is required before reliable advice can be given on the use of these materials for this purpose. Depending on the material and the technology applied (pyrolysis or hydrothermal carbonization), phytotoxicity and greenhouse gas emissions have been found for certain chars. In this study, our aim was to assess the feasibility of three chars as substrate constituents. We compared two biochars, one from forest waste and the other from olive mill waste, and a hydrochar from forest waste. We studied how chars affected substrate characteristics, plant performance, water economy and respiratory CO2 emission. Substrates containing biochar from forest waste showed the best characteristics, with good air/water relationships and adequate electrical conductivity. Those with biochar from olive mill waste were highly saline and, consequently, low quality. The substrates with hydrochar retained too much water and were poorly aerated, presenting high CO2 concentrations due to high respiratory activity. Plants performed well only when grown in substrates containing a maximum of 25 % biochar from forest waste or hydrochar. After analyzing the char characteristics, we concluded that biochar from forest waste could be safely used as a substrate constituent and is environmentally friendly when applied due to its low salinity and low CO2 emission. However, biochar from olive mill waste and hydrochar need to be improved before they can be used as substrate constituents.This study was funded by the Polytechnic University of Valencia (Projects on New Multidisciplinary Research; PAID-05-12). We thank Molly Marcus-McBride for supervising the English.Fornes Sebastiá, F.; Belda Navarro, RM. (2018). Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Scientia Agricola (Online). 75(4):304-312. https://doi.org/10.1590/1678-992X-2017-0062S304312754Abad, M., Noguera, P., & Burés, S. (2001). National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresource Technology, 77(2), 197-200. doi:10.1016/s0960-8524(00)00152-8Bargmann, I., Martens, R., Rillig, M. C., Kruse, A., & Kücke, M. (2013). Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science, 177(1), 59-67. doi:10.1002/jpln.201300154Bargmann, I., Rillig, M. C., Buss, W., Kruse, A., & Kuecke, M. (2013). Hydrochar and Biochar Effects on Germination of Spring Barley. Journal of Agronomy and Crop Science, 199(5), 360-373. doi:10.1111/jac.12024Bedussi, F., Zaccheo, P., & Crippa, L. (2015). Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. Biology and Fertility of Soils, 51(5), 625-635. doi:10.1007/s00374-015-1011-6Belda, R. M., Lidón, A., & Fornes, F. (2016). Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products, 94, 132-142. doi:10.1016/j.indcrop.2016.08.024Costello, R. C., & Sullivan, D. M. (2013). Determining the pH Buffering Capacity of Compost Via Titration with Dilute Sulfuric Acid. Waste and Biomass Valorization, 5(3), 505-513. doi:10.1007/s12649-013-9279-yFernandes, C., & Corá, J. E. (2004). Bulk density and relationship air/water of horticultural substrate. Scientia Agricola, 61(4), 446-450. doi:10.1590/s0103-90162004000400015Fornes, F., Belda, R. M., Carrión, C., Noguera, V., García-Agustín, P., & Abad, M. (2007). Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113(1), 52-59. doi:10.1016/j.scienta.2007.01.008Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48. doi:10.1016/j.jclepro.2014.08.057Fornes, F., & Belda, R. M. (2017). Acidification with nitric acid improves chemical characteristics and reduces phytotoxicity of alkaline chars. Journal of Environmental Management, 191, 237-243. doi:10.1016/j.jenvman.2017.01.026Fornes, F., Belda, R. M., Fernández de Córdova, P., & Cebolla-Cornejo, J. (2017). Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. Journal of the Science of Food and Agriculture, 97(11), 3675-3684. doi:10.1002/jsfa.8227Fornes, F., Carrión, C., García-de-la-Fuente, R., Puchades, R., & Abad, M. (2010). Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. Journal of Environmental Management, 91(8), 1747-1755. doi:10.1016/j.jenvman.2010.03.017GARCIADELAFUENTE, R., CARRION, C., BOTELLA, S., FORNES, F., NOGUERA, V., & ABAD, M. (2007). Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology, 98(18), 3561-3569. doi:10.1016/j.biortech.2006.11.008Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9Hoitink, H. A. J., Stone, A. G., & Han, D. Y. (1997). Suppression of Plant Diseases by Composts. HortScience, 32(2), 184-187. doi:10.21273/hortsci.32.2.184Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., … Emmerich, K.-H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71-106. doi:10.4155/bfs.10.81Mazuela, P., Salas, M. del C., & Urrestarazu, M. (2005). Vegetable Waste Compost as Substrate for Melon. Communications in Soil Science and Plant Analysis, 36(11-12), 1557-1572. doi:10.1081/css-200059054Méndez, A., Paz-Ferreiro, J., Gil, E., & Gascó, G. (2015). The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Scientia Horticulturae, 193, 225-230. doi:10.1016/j.scienta.2015.07.032Nieto, A., Gascó, G., Paz-Ferreiro, J., Fernández, J. M., Plaza, C., & Méndez, A. (2016). The effect of pruning waste and biochar addition on brown peat based growing media properties. Scientia Horticulturae, 199, 142-148. doi:10.1016/j.scienta.2015.12.012Sáez, J. A., Belda, R. M., Bernal, M. P., & Fornes, F. (2016). Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Industrial Crops and Products, 94, 97-106. doi:10.1016/j.indcrop.2016.08.035Smith, B. R., Fisher, P. R., & Argo, W. R. (2004). Growth and Pigment Content of Container-grown Impatiens and Petunia in Relation to Root Substrate pH and Applied Micronutrient Concentration. HortScience, 39(6), 1421-1425. doi:10.21273/hortsci.39.6.1421Solaiman, Z. M., Murphy, D. V., & Abbott, L. K. (2011). Biochars influence seed germination and early growth of seedlings. Plant and Soil, 353(1-2), 273-287. doi:10.1007/s11104-011-1031-4Steiner, C., & Harttung, T. (2014). Biochar as a growing media additive and peat substitute. Solid Earth, 5(2), 995-999. doi:10.5194/se-5-995-2014Tian, Y., Sun, X., Li, S., Wang, H., Wang, L., Cao, J., & Zhang, L. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15-18. doi:10.1016/j.scienta.2012.05.018Vaughn, S. F., Eller, F. J., Evangelista, R. L., Moser, B. R., Lee, E., Wagner, R. E., & Peterson, S. C. (2015). Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Industrial Crops and Products, 65, 467-471. doi:10.1016/j.indcrop.2014.10.04

    De novo transcriptome sequencing and SSR markers development for Cedrela balansae C. DC., a native tree species of northwest Argentina

    Get PDF
    The endangered Cedrela balansae C.DC. (Meliaceae) is a high-value timber species with great potential for forest plantations that inhabits the tropical forests in Northwestern Argentina. Research on this species is scarce because of the limited genetic and genomic information available. Here, we explored the transcriptome of C. balansae using 454 GS FLX Titanium next-generation sequencing (NGS) technology. Following de novo assembling, we identified 27,111 non-redundant unigenes longer than 200 bp, and considered these transcripts for further downstream analysis. The functional annotation was performed searching the 27,111 unigenes against the NR-Protein and the Interproscan databases. This analysis revealed 26,977 genes with homology in at least one of the Database analyzed. Furthermore, 7,774 unigenes in 142 different active biological pathways in C. balansae were identified with the KEGG database. Moreover, after in silico analyses, we detected 2,663 simple sequence repeats (SSRs) markers. A subset of 70 SSRs related to important “stress tolerance” traits based on functional annotation evidence, were selected for wet PCR-validation in C. balansae and other Cedrela species inhabiting in northwest and northeast of Argentina (C. fissilis, C. saltensis and C. angustifolia). Successful transferability was between 77% and 93% and thanks to this study, 32 polymorphic functional SSRs for all analyzed Cedrela species are now available. The gene catalog and molecular markers obtained here represent a starting point for further research, which will assist genetic breeding programs in the Cedrela genus and will contribute to identifying key populations for its preservation.Fil: Torales, Susana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Rivarola, Maximo Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Gonzalez, Sergio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Inza, María Virginia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Pomponio, María Florencia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Fernández, Paula. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Acuña, Cintia Vanesa. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zelener, Noga. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Fornes, Luis Fernando. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Tucuman-Santiago del Estero; ArgentinaFil: Hopp, Horacio Esteban. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcucci Poltri, Susana Noemí. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentin

    Biochar Improves the Properties of Poultry Manure Compost as Growing Media for Rosemary Production

    Get PDF
    [EN] Compost represents a sustainable alternative for peat (P) replacement in soilless plant cultivation, but its use can be limited by several inadequate physical and physicochemical properties. Biochar can alleviate some of the limitations of compost for its use as growth media by improving the physical properties, decreasing salinity and making the phytotoxic compounds unavailable for plants. We studied the physical and physicochemical properties of holm oak biochar (B), poultry manure compost (PMC), poultry manure composted with biochar (PMBC), a commercial peat (P) and multiple combinations of these materials as growth media, and their effect on the rooting and growth of rosemary. PMBC and PMC showed similar physical and physicochemical properties as growing media, and they both were phytotoxic when used in a rate above 50% (by volume) in the growing medium. However, when used at proportion of 25%, PMBC was less phytotoxic than PMC and enhanced the percentage of rosemary cutting rooting. The incorporation of B in the growing medium instead of P (either at 50% or 75% in volume) increased the stability of the growing media and the percentage of rooted cuttings, but it did not affect plant growth significantly. Our results demonstrate the potential of substituting peat by a combination of poultry manure compost and biochar for the formulation of growth media.This research was funded by SPANISH MINISTRY OF ECONOMY AND COMPETITIVENESS, grant numbers AGL2012-40143-C02-01 and RTI2018-099417-B-I00, co-funded with EU FEDER fundsFornes Sebastiá, F.; Liu-Xu, L.; Lidón, A.; Sanchez-Garcia, M.; Luz Cayuela, M.; Sanchez-Monedero, MA.; Belda Navarro, RM. (2020). Biochar Improves the Properties of Poultry Manure Compost as Growing Media for Rosemary Production. Agronomy. 10(2):1-16. https://doi.org/10.3390/agronomy10020261S116102KERN, J., TAMMEORG, P., SHANSKIY, M., SAKRABANI, R., KNICKER, H., KAMMANN, C., … GLASER, B. (2017). SYNERGISTIC USE OF PEAT AND CHARRED MATERIAL IN GROWING MEDIA – AN OPTION TO REDUCE THE PRESSURE ON PEATLANDS? Journal of Environmental Engineering and Landscape Management, 25(2), 160-174. doi:10.3846/16486897.2017.1284665Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., … Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22(12), 4134-4149. doi:10.1111/gcb.13303Raviv, M. (2005). Production of High-quality Composts for Horticultural Purposes: A Mini-review. HortTechnology, 15(1), 52-57. doi:10.21273/horttech.15.1.0052GARCIADELAFUENTE, R., CARRION, C., BOTELLA, S., FORNES, F., NOGUERA, V., & ABAD, M. (2007). Biological oxidation of elemental sulphur added to three composts from different feedstocks to reduce their pH for horticultural purposes. Bioresource Technology, 98(18), 3561-3569. doi:10.1016/j.biortech.2006.11.008Alburquerque, J. A., Gonzálvez, J., García, D., & Cegarra, J. (2006). Measuring detoxification and maturity in compost made from «alperujo», the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere, 64(3), 470-477. doi:10.1016/j.chemosphere.2005.10.055Wang, P., Changa, C. M., Watson, M. E., Dick, W. A., Chen, Y., & Hoitink, H. A. J. (2004). Maturity indices for composted dairy and pig manures. Soil Biology and Biochemistry, 36(5), 767-776. doi:10.1016/j.soilbio.2003.12.012Sáez, J. A., Belda, R. M., Bernal, M. P., & Fornes, F. (2016). Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Industrial Crops and Products, 94, 97-106. doi:10.1016/j.indcrop.2016.08.035Kelleher, B. ., Leahy, J. ., Henihan, A. ., O’Dwyer, T. ., Sutton, D., & Leahy, M. . (2002). Advances in poultry litter disposal technology – a review. Bioresource Technology, 83(1), 27-36. doi:10.1016/s0960-8524(01)00133-xAtiyeh, R. M., Subler, S., Edwards, C. A., Bachman, G., Metzger, J. D., & Shuster, W. (2000). Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5), 579-590. doi:10.1078/s0031-4056(04)70073-6Steiner, C., & Harttung, T. (2014). Biochar as a growing media additive and peat substitute. Solid Earth, 5(2), 995-999. doi:10.5194/se-5-995-2014Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(1). doi:10.1038/ncomms1053Fornes, F., & Belda, R. M. (2018). Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Scientia Agricola, 75(4), 304-312. doi:10.1590/1678-992x-2017-0062Tian, Y., Sun, X., Li, S., Wang, H., Wang, L., Cao, J., & Zhang, L. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15-18. doi:10.1016/j.scienta.2012.05.018Fornes, F., Belda, R. M., Fernández de Córdova, P., & Cebolla-Cornejo, J. (2017). Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. Journal of the Science of Food and Agriculture, 97(11), 3675-3684. doi:10.1002/jsfa.8227Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M., & Pozzi, A. (2015). Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 66(7), 747. doi:10.1071/cp14247Belda, R. M., Lidón, A., & Fornes, F. (2016). Biochars and hydrochars as substrate constituents for soilless growth of myrtle and mastic. Industrial Crops and Products, 94, 132-142. doi:10.1016/j.indcrop.2016.08.024Fornes, F., & Belda, R. M. (2019). Use of raw and acidified biochars as constituents of growth media for forest seedling production. New Forests, 50(6), 1063-1086. doi:10.1007/s11056-019-09715-yHuang, L., Niu, G., Feagley, S. E., & Gu, M. (2019). Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Industrial Crops and Products, 129, 549-560. doi:10.1016/j.indcrop.2018.12.044Alvarez, J. M., Pasian, C., Lal, R., Lapez, R., & Ferna¡ndez, M. (2017). Vermicompost and biochar as substitutes of growing media in ornamental-plant production. Journal of Applied Horticulture, 19(03), 205-214. doi:10.37855/jah.2017.v19i03.37Steiner, C., Das, K. C., Melear, N., & Lakly, D. (2010). Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. Journal of Environmental Quality, 39(4), 1236-1242. doi:10.2134/jeq2009.0337Wang, C., Lu, H., Dong, D., Deng, H., Strong, P. J., Wang, H., & Wu, W. (2013). Insight into the Effects of Biochar on Manure Composting: Evidence Supporting the Relationship between N2O Emission and Denitrifying Community. Environmental Science & Technology, 47(13), 7341-7349. doi:10.1021/es305293hWang, Y., Villamil, M. B., Davidson, P. C., & Akdeniz, N. (2019). A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Science of The Total Environment, 685, 741-752. doi:10.1016/j.scitotenv.2019.06.244Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & Cayuela, M. L. (2015). Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology, 192, 272-279. doi:10.1016/j.biortech.2015.05.003Maroušek, J., Hašková, S., Zeman, R., Žák, J., Vaníčková, R., Maroušková, A., … Myšková, K. (2015). Polemics on Ethical Aspects in the Compost Business. Science and Engineering Ethics, 22(2), 581-590. doi:10.1007/s11948-015-9664-yAbad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, A., & Puchades, R. (2005). Physical Properties of Various Coconut Coir Dusts Compared to Peat. HortScience, 40(7), 2138-2144. doi:10.21273/hortsci.40.7.2138Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442. doi:10.1016/j.geoderma.2010.05.012Jaiswal, A. K., Elad, Y., Paudel, I., Graber, E. R., Cytryn, E., & Frenkel, O. (2017). Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Scientific Reports, 7(1). doi:10.1038/srep44382Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of Systemic Resistance in Plants by Biochar, a Soil-Applied Carbon Sequestering Agent. Phytopathology®, 100(9), 913-921. doi:10.1094/phyto-100-9-0913Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1-2), 481-496. doi:10.1007/s11104-010-0544-6Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48. doi:10.1016/j.jclepro.2014.08.057Fornes, F., Belda, R. M., Carrión, C., Noguera, V., García-Agustín, P., & Abad, M. (2007). Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113(1), 52-59. doi:10.1016/j.scienta.2007.01.008Moran, R. (1982). Formulae for Determination of Chlorophyllous Pigments Extracted with N,N-Dimethylformamide. Plant Physiology, 69(6), 1376-1381. doi:10.1104/pp.69.6.1376Mendoza-Hernández, D., Fornes, F., & Belda, R. M. (2014). Compost and vermicompost of horticultural waste as substrates for cutting rooting and growth of rosemary. Scientia Horticulturae, 178, 192-202. doi:10.1016/j.scienta.2014.08.024Fornes, F., Mendoza-Hernandez, D., & Belda, R. M. (2013). Compost versus vermicompost as substrate constituents for rooting shrub cuttings. Spanish Journal of Agricultural Research, 11(2), 518. doi:10.5424/sjar/2013112-3304Esteban, R., Ariz, I., Cruz, C., & Moran, J. F. (2016). Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 248, 92-101. doi:10.1016/j.plantsci.2016.04.008Domínguez-Valdivia, M. D., Aparicio-Tejo, P. M., Lamsfus, C., Cruz, C., Martins-Loução, M. A., & Moran, J. F. (2008). Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and -sensitive plants. Physiologia Plantarum, 132(3), 359-369. doi:10.1111/j.1399-3054.2007.01022.xBritto, D. T., & Kronzucker, H. J. (2002). NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 159(6), 567-584. doi:10.1078/0176-1617-0774Fornes, F., Carrión, C., García-de-la-Fuente, R., Puchades, R., & Abad, M. (2010). Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. Journal of Environmental Management, 91(8), 1747-1755. doi:10.1016/j.jenvman.2010.03.01

    Bases científico-técnicas para la estrategia estatal de infraestructura verde y de la conectividad y restauración ecológicas

    Get PDF
    [ES] Las bases científico-técnicas para la Estrategia estatal de infraestructura verde y de la conectividad y restauración ecológicas buscan asentar los fundamentos para la redacción de dicha Estrategia, que tiene como objetivo el desarrollo en España de los objetivos definidos para la infraestructura verde en Europa: - Mejorar, conservar y restaurar la biodiversidad, incrementando la conectividad espacial y funcional entre las áreas naturales y semi-naturales, mejorando la permeabilidad del paisaje y mitigando la fragmentación. - Mantener, fortalecer y, donde sea posible, restaurar el funcionamiento de los ecosistemas con el fin de garantizar el aporte de múltiples servicios ecosistémicos y servicios culturales. - Reconocer el valor económico de los servicios ecosistémicos y aumentar su valor mediante el fortalecimiento de su funcionalidad. - Mejorar el vínculo social y cultural con la naturaleza y la biodiversidad, reconociendo y aumentando el valor económico de los servicios ecosistémicos y creando incentivos para que las partes interesadas y la sociedad se involucren en su mantenimiento y mejora. - Minimizar la expansión urbana y sus efectos negativos sobre la biodiversidad, los servicios ecosistémicos y las condiciones de calidad de vida. - A fin de mitigar y adaptarse al cambio climático, aumentar la resiliencia y reducir la vulnerabilidad frente a riesgos naturales: inundaciones, escasez de agua y sequías, erosión costera, incendios forestales, deslizamientos de tierra y avalanchas, entre otros. - Favorecer un mejor uso del territorio en Europa. - Contribuir a una vida saludable y unos lugares mejores para vivir, el aprovisionamiento de espacios abiertos y oportunidades de esparcimiento, el aumento de las conexiones entre el medio rural y urbano, el desarrollo de sistemas sostenibles de transporte, y el fortalecimiento del sentimiento de pertenencia a la comunidad. Igualmente, se propone un objetivo general y cuatro objetivos específicos que sirvan de base para la implementación de la infraestructura verde en el Estado español. Objetivo general: Implantar y desarrollar una infraestructura verde para el territorio español a través de la definición de unos objetivos específicos y un conjunto de directrices que, apoyadas en un diagnóstico general de la realidad territorial y medioambiental, impulsen su establecimiento y sirvan de referencia para la elaboración de las correspondientes estrategias autonómicas de infraestructura verde. Para alcanzar este objetivo, la Estrategia establece criterios comunes para la identificación, conservación y restauración de la infraestructura verde en todas las Comunidades Autónomas. Objetivo específico 1: Aplicar herramientas de planificación y gestión territorial diseñadas desde un planteamiento que vincule lógicamente las actuaciones con los resultados esperados de conservación de la biodiversidad, de restauración de la conectividad y la funcionalidad de los ecosistemas, y del mantenimiento de los servicios ecosistémicos. Esta planificación y gestión se apoyará en la evaluación sistemática de los resultados como fuente de información para la mejora continua. La aplicación de estas herramientas debe contribuir a la mitigación de los efectos y presiones que los actuales modelos de desarrollo generan sobre el medio ambiente así como a la adaptación ante cambios globales y difícilmente eludibles como el cambio climático. Objetivo específico 2. Maximizar la integración transversal de los conceptos, objetivos y planteamientos de la infraestructura verde en los distintos niveles de la planificación territorial. La integración se alcanzará mediante la actuación de equipos humanos transdisciplinares adecuadamente formados y capacitados, el establecimiento de protocolos de priorización, la implementación de procedimientos adecuados de información y participación pública, y el impulso y reconocimiento de las contribuciones propuestas o apoyadas por la sociedad civil. Objetivo específico 3. Identificar las formas en que debe fortalecerse la coordinación efectiva entre las distintas administraciones públicas y sus respectivos órganos con el fin de implantar con éxito la infraestructura verde. Objetivo específico 4. Promover la mejora del conocimiento, la investigación y la transferencia en el marco de los objetivos de la infraestructura verde, así como la difusión de información a todos los niveles de la sociedad, con el fin de conseguir una adecuada sensibilización acerca de la relevancia de este instrumento de conservación ambiental.El presente documento fue elaborado en el año 2016 en el marco del proyecto Elaboración de la Estrategia Estatal de Infraestructura Verde y de la Conectividad y Restauración Ecológicas, Promovido y financiado por el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente

    Nanomicelas poliméricas portadoras de anandamida y sus efectos renales antihipertensivos

    Get PDF
    Previamente demostramos importantes efectos natriuréticos in vitro de anandamida (AEA) nanoformulada en nanopartículas poliméricas cuyo tamaño evita su acumulación en órganos como los riñones. Por ello, resulta de especial interés diseñar nanoestructuras que puedan acumularse farmacológicamente en estos tejidos. Así, nuestro objetivo primario fue determinar la capacidad de nanomicelas poliméricas para encapsular AEA y evaluar su captación renal pasiva y también evaluar los efectos in vivo en ratas espontáneamente hipertensas (SHR). Una vez preparadas y caracterizadas dichas nanomicelas, se determinó su biodistribución. Los animales SHR y normotensos (WKY), n=3 por grupo, se dividieron en 5 tratamientos: control, sham, AEA libre recién dispersada en solución salina y 24 horas después de su dispersión, y AEA en nanomicelas. Se determinó la excreción fraccionada de sodio (EFS) tanto al inicio como después de los tratamientos (100 µg AEA/kg IV). Se obtuvieron nanomicelas (~14 nm) capaces de encapsular AEA. Los riñones fueron el segundo sitio de mayor acumulación de la nanoformulación después de 24 horas. La AEA libre recientemente dispersada mostró su clásica respuesta trifásica en SHR, dicha respuesta estuvo ausente en el resto de tratamientos. La AEA nanoformulada produjo un efecto antihipertensivo sostenido durante 2 horas, acompañado de un aumento significativo de la EFS. Estos efectos no se observaron en ratas WKY, en animales sham o tratados con AEA libre luego de 24 horas de su preparación. Sin precedentes, demostramos in vivo efectos natriuréticos e hipotensores de AEA nanoformulada en nanomicelas poliméricas, sugiriendo su posible uso como nuevo agente antihipertensivo, de administración intravenosa y acumulación renal pasiva.Fil: Martín Gimenéz, Virma. Universidad Catolica de Cuyo - Sede San Juan. Facultad de Ciencias de la Alimentación, Bioquímicas y Farmacéuticas. Instituto de Investigación en Ciencias Químicas; ArgentinaFil: Chiappetta, Diego. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Moretton, Marcela. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Salgueiro, María. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Fornes, Miguel Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Manucha, Walter Ariel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas; ArgentinaIV Reunión Conjunta de Sociedades de Biología de la República Argentina: “Nuevas Evidencias y Cambios de Paradigmas en Ciencias Biológicas”MendozaArgentinaSociedad de Biología de CuyoSociedad Argentina de BiologíaSociedad de Biología de CórdobaSociedad de Biología de RosarioAsociación de Biología de Tucumá

    Natural rubber-clay nanocomposites: mechanical and structural properties

    Get PDF
    International audienceThe mechanical properties of non-vulcanized natural rubber and dialyzed natural rubber-clay nanocomposites have been studied by uniaxial deformations to evaluate the reinforcement efficiency of the clay. We show that while non-rubber molecules contribute to auto-reinforcement, removal of these molecules improves significantly the performance of clay as reinforcement agent. These mechanical properties are discussed in relation to morphological aspects of the clay characterized by TEM and SANS. The nanocomposites prepared by "latex-mixing" with aqueous dispersions of clay are found to contain completely exfoliated clay lamellae in coexistence with tactoids. Improved mechanical properties of the nanocomposites can be modeled by the high aspect ratio of exfoliated clay platelets coupled with immobilized rubber matrix. Interestingly, presence of tactoids does not appear to compromise the excellent reinforcement properties of the exfoliated platelets. At high deformations, strain-induced alignment of the clay exhibits anisotropic scattering, with anisotropy increasing with clay concentration and stretching

    Longevidad potencial de semillas de Cedrela balansae C.DC. (Cedro Orán)

    Get PDF
    PosterCedrela balansae es una especie de gran interés forestoindustrial procedente de la zona pedemontana del sector Norte de las Yungas australes. Dado la accesibilidad y el valor su madera se encuentra amenazada por la sobreexplotación de sus poblaciones, por lo que su manejo y conservación in situ y ex situ tienen una alta prioridad. Como varias especies subtropicales, produce semillas ortodoxas, pero su viabilidad se reduce rápidamente en condiciones poco controladas de almacenamiento, lo que dificulta la disponibilidad de semillas de calidad para su uso anualmente. El objetivo de este trabajo fue determinar los parámetros de la ecuación de viabilidad de Ellis y Roberts (1980), que permitan estimar la longevidad potencial de las semillas almacenadas bajo distintas condiciones de temperatura y contenidos de humedad (CH).Fil: Galíndez, Guadalupe. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alvarez, Ana. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; ArgentinaFil: Ceccato, Diana Valeria. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz. Agencia de Extensión Rural San Julián; Argentina.Fil: Suhring, Silvia. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rivero, María V. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; ArgentinaFil: Malagrina, Gisela Marina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; ArgentinaFil: Saravia, Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Fornes, Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; Argentin

    Efecto de la temperatura, el potencial hídrico y su interacción sobre la germinación de semillas de lapacho rosado (Handroanthus impetiginosus)

    Get PDF
    PosterUno de los procesos más importantes del ciclo de vida de las plantas es la germinación de las semillas. La temperatura y la disponibilidad de agua son los principales factores ambientales que regulan la germinación de las semillas, afectando tanto el porcentaje final como el tiempo de germinación (Baskin y Baskin, 2014). Para el lapacho rosado (Handroanthus impetiginosus) se ha indicado que las semillas pueden germinar en un amplio rango de temperaturas (15- 40°C) con una temperatura óptima alrededor de los 32°C y que son sensibles al estrés hídrico (hasta -0,6M o -0.8 Mpa; Pastrana-Ignes, 2020). Sin embargo, se ha indicado que ambos factores actuarían de manera independiente sobre la germinación de las semillas, aunque esta interacción ha sido evaluada solo a 25 y 30°C (Valdovinos et al., 2021). El objetivo de este trabajo fue determinar el efecto de la temperatura, potencial hídrico y su interacción sobre la germinación de semillas de esta especie, considerando un amplio rango de temperaturas y potenciales hídricos.Instituto de Recursos BiológicosFil: Rivero, María Victoria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; Argentina.Fil: Malagrina, Gisela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; Argentina.Fil: Alvarez, Ana Carolina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; Argentina.Fil: Amarillo, Karina. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos. Banco Base de Germoplasma; Argentina.Fil: Fornes, Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Suhring, Silvia. Universidad Nacional de Salta; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Batlla, Diego. Universidad de Buenos Aires. Facultad de Agronomía. Catedra de Cerealicultura; ArgentinaFil: Galindez, Guadalupe. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Laboratorio de Investigaciones Botánicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
    corecore