2,673 research outputs found

    Mitochondria and the NLRP3 Inflammasome in Alcoholic and Nonalcoholic Steatohepatitis

    Full text link
    Alcoholic (ASH) and nonalcoholic steatohepatitis (NASH) are advanced stages of fatty liver disease and two of the most prevalent forms of chronic liver disease. ASH and NASH are associated with significant risk of further progression to cirrhosis and hepatocellular carcinoma (HCC), the most common type of liver cancer, and a major cause of cancer-related mortality. Despite extensive research and progress in the last decades to elucidate the mechanisms of the development of ASH and NASH, the pathogenesis of both diseases is still poorly understood. Mitochondrial damage and activation of inflammasome complexes have a role in inducing and sustaining liver damage. Mitochondrial dysfunction produces inflammatory factors that activate the inflammasome complexes. NLRP3 inflammasome (nucleotide-binding oligomerization domain-like receptor protein 3) is a multiprotein complex that activates caspase 1 and the release of pro-inflammatory cytokines, including interleukin-1? (IL-1?) and interleukin-18 (IL-18), and contributes to inflammatory pyroptotic cell death. The present review, which is part of the issue "Mitochondria in Liver Pathobiology", provides an overview of the role of mitochondrial dysfunction and NLRP3 activation in ASH and NASH

    Systematic Review and Meta-Analysis of Medication Reviews Conducted by Pharmacists on Cardiovascular Diseases Risk Factors in Ambulatory Care

    Full text link
    Background Pharmacists-led medication reviews (MRs) are claimed to be effective for the control of cardiovascular diseases; however, the evidence in the literature is conflicting. The main objective of this meta-analysis was to analyze the impact of pharmacist-led MRs on cardiovascular disease risk factors overall and in different ambulatory settings while exploring the effects of different components of MRs. Methods and Results Searches were conducted in PubMed, Web of Science, Embase, the Cumulative Index to Nursing and Allied Health Literature, and the Cochrane Library Central Register of Controlled Trials database. Randomized and cluster randomized controlled trials of pharmacist-led MRs compared with usual care were included. Settings were community pharmacies and ambulatory clinics. The classification used for MRs was the Pharmaceutical Care Network Europe as basic (type 1), intermediate (type 2), and advanced (type 3). Meta-analyses in therapeutic goals used odds ratios to standardize the effect of each study, and for continuous data (eg, systolic blood pressure) raw differences were calculated using baseline and final values, with 95% CIs. Prediction intervals were calculated to account for heterogeneity. Sensitivity analyses were conducted to test the robustness of results. Meta-analyses included 69 studies with a total of 11 644 patients. Sample demographic characteristics were similar between studies. MRs increased control of hypertension (odds ratio, 2.73; 95% prediction interval, 1.05-7.08), type 2 diabetes mellitus (odds ratio, 3.11; 95% prediction interval, 1.17-5.88), and high cholesterol (odds ratio, 1.91; 95% prediction interval, 1.05-3.46). In ambulatory clinics, MRs produced significant effects in control of diabetes mellitus and cholesterol. For community pharmacies, systolic blood pressure and low-density lipoprotein values decreased significantly. Advanced MRs had larger effects than intermediate MRs in diabetes mellitus and dyslipidemia outcomes. Most intervention components had no significant effect on clinical outcomes and were often poorly described. CIs were significant in all analyses but prediction intervals were not in continuous clinical outcomes, with high heterogeneity present. Conclusions Intermediate and advanced MRs provided by pharmacists may improve control of blood pressure, cholesterol, and type 2 diabetes mellitus, as statistically significant prediction intervals were found. However, most continuous clinical outcomes failed to achieve statistical significance, with high heterogeneity present, although positive trends and effect sizes were found. Studies should use a standardized method for MRs to diminish sources of these heterogeneities

    Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation

    Get PDF
    Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4? (HNF4?) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7?-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4? levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile

    Sphingosine 1-phosphate receptor 4 promotes nonalcoholic steatohepatitis by activating NLRP3 inflammasome

    Get PDF
    BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n-octylphenyl)ethyl]-1,3-propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4(++/-) mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domaincontainning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4(+/-) mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet

    Get PDF
    \ua9 2024 The AuthorsIn the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI

    ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research.</p> <p>Methods</p> <p>An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields.</p> <p>Results</p> <p>The method was validated by comparison to the conventional stereological counting. The decrease in cone density in <it>rd1 </it>mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the <it>rd1 </it>mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes <it>Nxnl1 </it>or <it>Nxnl2 </it>encoding RdCVFs, the loss of cones is more pronounced in the ventral retina.</p> <p>Conclusion</p> <p>The automated platform ℮-conome used here for retinal disease is a tool that can broadly accelerate translational research for neurodegenerative diseases.</p

    Down Regulation of a Matrix Degrading Cysteine Protease Cathepsin L, by Acetaldehyde: Role of C/EBPα

    Get PDF
    BACKGROUND: The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. METHODOLOGY AND RESULTS: We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein α (C/EBP α) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP α levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP α binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP α expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. CONCLUSION: Acetaldehyde down regulates the C/EBP α mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis

    Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview

    Get PDF
    We investigate the Fe, C, N, O, Mg, Al, Si, K, Ca, Ce, and Nd abundances of 2283 red giant stars in 31 globular clusters from high-resolution spectra observed in both the Northern and Southern hemisphere by the SDSS-IV APOGEE-2 survey. This unprecedented homogeneous data set, largest to date, allows us to discuss the intrinsic Fe spread, the shape, and statistics of Al-Mg and N-C anti-correlations as a function of cluster mass, luminosity, age, and metallicity for all 31 clusters. We find that the Fe spread does not depend on these parameters within our uncertainties including cluster metallicity, contradicting earlier observations. We do not confirm the metallicity variations previously observed in M22 and NGC 1851. Some clusters show a bimodal Al distribution, while others exhibit a continuous distribution as has been previously reported in the literature. We confirm more than two populations in ω Cen and NGC 6752, and find new ones in M79. We discuss the scatter of Al by implementing a correction to the standard chemical evolution of Al in the Milky Way. After correction, its dependence on cluster mass is increased suggesting that the extent of Al enrichment as a function of mass was suppressed before the correction. We observe a turnover in the Mg-Al anticorrelation at very low Mg in ω Cen, similar to the pattern previously reported in M15 and M92. ω Cen may also have a weak K-Mg anticorrelation, and if confirmed, it would be only the third cluster known to show such a pattern
    corecore