613 research outputs found

    Extracellular Vesicles Derived from Plasmodium-infected and Non-infected Red Blood Cells as Targeted Drug Delivery Vehicles

    Get PDF
    Among several factors behind drug resistance evolution in malaria is the challenge of administering overall doses that are not toxic for the patient but that, locally, are sufficiently high to rapidly kill the parasites. Thus, a crucial antimalarial strategy is the development of drug delivery systems capable of targeting antimalarial compounds to Plasmodium with high specificity. In the present study, extracellular vesicles (EVs) have been evaluated as a drug delivery system for the treatment of malaria. EVs derived from naive red blood cells (RBCs) and from Plasmodium falciparum-infected RBCs (pRBCs) were isolated by ultrafiltration followed by size exclusion chromatography. Lipidomic characterization showed that there were no significant qualitative differences between the lipidomic profiles of pRBC-derived EVs (pRBC-EVs) and RBC-derived EVs (RBC-EVs). Both EVs were taken up by RBCs and pRBCs, although pRBC-EVs were more efficiently internalized than RBC-EVs, which suggested their potential use as drug delivery vehicles for these cells. When loaded into pRBC-EVs, the antimalarial drugs atovaquone and tafenoquine inhibited in vitro P. falciparum growth more efficiently than their free drug counterparts, indicating that pRBC-EVs can potentially increase the efficacy of several small hydrophobic drugs used for the treatment of malaria

    Incidence of co-infections and superinfections in hospitalised patients with COVID-19: a retrospective cohort study

    Get PDF
    Objectives: To describe the burden, epidemiology and outcomes of co-infections and superinfections occurring in hospitalized patients with coronavirus disease 2019 (COVID-19). Methods: We performed an observational cohort study of all consecutive patients admitted for ≥48 hours to the Hospital Clinic of Barcelona for COVID-19 (28 February to 22 April 2020) who were discharged or dead. We describe demographic, epidemiologic, laboratory and microbiologic results, as well as outcome data retrieved from electronic health records. Results: Of a total of 989 consecutive patients with COVID-19, 72 (7.2%) had 88 other microbiologically confirmed infections: 74 were bacterial, seven fungal and seven viral. Community-acquired co-infection at COVID-19 diagnosis was uncommon (31/989, 3.1%) and mainly caused by Streptococcus pneumoniae and Staphylococcus aureus. A total of 51 hospital-acquired bacterial superinfections, mostly caused by Pseudomonas aeruginosa and Escherichia coli, were diagnosed in 43 patients (4.7%), with a mean (SD) time from hospital admission to superinfection diagnosis of 10.6 (6.6) days. Overall mortality was 9.8% (97/989). Patients with community-acquired co-infections and hospital-acquired superinfections had worse outcomes. Conclusions: Co-infection at COVID-19 diagnosis is uncommon. Few patients developed superinfections during hospitalization. These findings are different compared to those of other viral pandemics. As it relates to hospitalized patients with COVID-19, such findings could prove essential in defining the role of empiric antimicrobial therapy or stewardship strategies

    Polymorphisms of Pyrimidine Pathway Enzymes Encoding Genes and HLA-B*40∶01 Carriage in Stavudine-Associated Lipodystrophy in HIV-Infected Patients

    Get PDF
    Altres ajuts: Fundación para la Investigación y Prevención del SIDA en España (FIPSE 36610, 36572/06); Red de Investigación en SIDA (RIS RD12/0017/0005, RD12/0017/0014).To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*40∶01 carriage with HIV/Highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS). Three-hundred and thirty-six patients, 187 with HALS and 149 without HALS, and 72 uninfected subjects were recruited. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Polymorphisms in the thymidylate synthase (TS) and methylene-tetrahydrofolate reductase (MTHFR) genes were determined by direct sequencing, HLA-B genotyping by PCR-SSOr Luminex Technology, and intracellular levels of stavudine triphosphate (d4T-TP) by a LC-MS/MS assay method. HALS was associated with the presence of a low expression TS genotype polymorphism (64.7% vs. 42.9%, OR = 2.43; 95%CI: 1.53-3.88, P<0.0001). MTHFR gene polymorphisms and HLA-B*40∶01 carriage were not associated with HALS or d4T-TP intracellular levels. Low and high expression TS polymorphisms had different d4T-TP intracellular levels (25.60 vs. 13.60 fmol/10 6 cells, P<0.0001). Independent factors associated with HALS were(OR [95%CI]: (a) Combined TS and MTHFR genotypes (p = 0.006, reference category (ref.): 'A+A'; OR for 'A+B' vs. ref.: 1.39 [0.69-2.80]; OR for 'B+A' vs. ref.: 2.16 [1.22-3.83]; OR for 'B+B' vs. ref.: 3.13, 95%CI: 1.54-6.35), (b) maximum viral load ≥5 log10 (OR: 2.55, 95%CI: 1.56-4.14, P = 0.001), (c) use of EFV (1.10 [1.00-1.21], P = 0.008, per year of use). HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*40∶01 carriage in Caucasian patients with long-term exposure to stavudine

    Angiocrine polyamine production regulates adiposity.

    Get PDF
    Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid β-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.We thank members of the Endothelial Pathobiology and Microenvironment Group for helpful discussions. We thank the CERCA Program/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. The research leading to these results has received funding from la Fundación BBVA (Ayuda Fundacion BBVA a Equipos de Investigación Científica 2019, PR19BIOMET0061) and from SAF2017-82072-ERC from Ministerio de Ciencia, Innovación y Universidades (MCIU) (Spain). The laboratory of M.G. is also supported by the research grants SAF2017-89116R-P (FEDER/EU) co-funded by European Regional Developmental Fund (ERDF), a Way to Build Europe and PID2020-116184RB-I00 from MCEI; by the Catalan Government through the project 2017-SGR; PTEN Research Foundation (BRR-17-001); La Caixa Foundation (HR19-00120 and HR21-00046); by la Asociación Española contra el Cancer-Grupos Traslacionales (GCTRA18006CARR, also to A.C.); European Foundation for the Study of Diabetes/Lilly research grant, also to M.C.); and by the People Programme (Marie Curie Actions; grant agreement 317250) of the European Union’s Seventh Framework Programme FP7/2007-2013 and the Marie Skłodowska-Curie (grant agreement 675392) of the European Union’s Horizon 2020 research. The laboratory of A.C. is supported by the Basque Department of Industry, Tourism and Trade (Elkartek) and the department of education (IKERTALDE IT1106-16), the MCIU (PID2019-108787RB-I00 (FEDER/ EU); Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks SAF2016-81975-REDT), La Caixa Foundation (ID 100010434), under the agreement LCF/PR/HR17, the Vencer el Cancer foundation and the European Research Council (ERC) (consolidator grant 819242). CIBERONC was co-funded with FEDER funds and funded by Instituto de Salud Carlos III (ISCIII). The laboratory of M.C. is supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 725004) and CERCA Programme/Generalitat de Catalunya (M.C.). The laboratory of D.S. is supported by research grants from MINECO (SAF2017- 83813-C3-1-R, also to L.H., cofounded by the ERDF), CIBEROBN (CB06/03/0001), Government of Catalonia (2017SGR278) and Fundació La Marató de TV3 (201627- 30). The laboratory of R.N. is supported by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (RTI2018-099413-B-I00 and and RED2018-102379-T), Xunta de Galicia (2016-PG057 and 2020-PG015), ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 810331), Fundación BBVA, Fundacion Atresmedia and CIBEROBN, which is an initiative of the ISCIII of Spain, which is supported by FEDER funds. The laboratory of J.A.V. is supported by research grants from MICINN (RTI2018-099250-B100) and by La Caixa Foundation (ID 100010434, LCF/PR/HR17/52150009). P.M.G.-R. is supported by ISCIII grant PI15/00701 cofinanced by the ERDF, A Way to Build Europe. Personal support was from Marie Curie ITN Actions (E.M.), Juan de la Cierva (IJCI-2015-23455, P.V.), CONICYT fellowship from Chile (S.Z.), Vetenskapsradet (Swedish Research Council, 2018-06591, L.G.) and NCI K99/R00 Pathway to Independence Award (K99CA245122, P. Castel).S

    Sp6 and Sp8 transcription factors control AER formation and dorsal-ventral patterning in limb development

    Get PDF
    The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. The induction of the AER is a complex process that relies on integrated interactions among the Fgf, Wnt, and Bmp signaling pathways that operate within the ectoderm and between the ectoderm and the mesoderm of the early limb bud. The transcription factors Sp6 and Sp8 are expressed in the limb ectoderm and AER during limb development. Sp6 mutant mice display a mild syndactyly phenotype while Sp8 mutants exhibit severe limb truncations. Both mutants show defects in AER maturation and in dorsal-ventral patterning. To gain further insights into the role Sp6 and Sp8 play in limb development, we have produced mice lacking both Sp6 and Sp8 activity in the limb ectoderm. Remarkably, the elimination or significant reduction in Sp6;Sp8 gene dosage leads to tetra-amelia; initial budding occurs, but neither Fgf8 nor En1 are activated. Mutants bearing a single functional allele of Sp8 (Sp6-/-;Sp8+/-) exhibit a split-hand/foot malformation phenotype with double dorsal digit tips probably due to an irregular and immature AER that is not maintained in the center of the bud and on the abnormal expansion of Wnt7a expression to the ventral ectoderm. Our data are compatible with Sp6 and Sp8 working together and in a dose-dependent manner as indispensable mediators of Wnt/βcatenin and Bmp signaling in the limb ectoderm. We suggest that the function of these factors links proximal-distal and dorsal-ventral patterning

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease
    corecore