12 research outputs found

    Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens

    Full text link
    We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO) and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. We show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.Comment: 18 pages, 7 figure

    First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk

    No full text
    Li-rich cathode materials are potential candidates for next-generation Li-ion batteries. However, they exhibit a large voltage hysteresis on the first charge/discharge cycle, which involves a substantial (up to 1 V) loss of voltage and therefore energy density. For Na cathodes, for example Na0.75[Li0.25Mn0.75]O2, voltage hysteresis can be explained by the formation of molecular O2 trapped in voids within the particles. Here we show that this is also the case for Li1.2Ni0.13Co0.13Mn0.54O2. Resonant inelastic X-ray scattering and 17O magic angle spinning NMR spectroscopy show that molecular O2, rather than O22−, forms within the particles on the oxidation of O2− at 4.6 V versus Li+/Li on charge. These O2 molecules are reduced back to O2− on discharge, but at the lower voltage of 3.75 V, which explains the voltage hysteresis in Li-rich cathodes. 17O magic angle spinning NMR spectroscopy indicates a quantity of bulk O2 consistent with the O-redox charge capacity minus the small quantity of O2 loss from the surface. The implication is that O2, trapped in the bulk and lost from the surface, can explain O-redox

    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009-31 July 2009

    No full text
    This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle, Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium alboatrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.Glenn R. Almany...Rohan Mellick...Maurizio Rossetto...et al

    Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009

    No full text
    This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.This article is from Molecular Ecology Resources 9 (2009): 1460, doi:10.1111/j.1755-0998.2009.02759.x.</p

    Avtomatika i telemechanika

    No full text
    (Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end science platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary surveys that have occurred in the nearby Universe, but now conducted at the peak of the star formation history of the Universe (iii) derivation of the mass of the neutrino and insights into inflationary physics through a cosmological redshift survey that probes a large volume of the Universe with a high galaxy density. MSE is positioned to become a critical hub in the emerging international network of front-line astronomical facilities, with scientific capabilities that naturally complement and extend the scientific power of Gaia, the Large Synoptic Survey Telescope, the Square Kilometer Array, Euclid, WFIRST, the 30m telescopes and many more
    corecore