882 research outputs found

    Cross-language semantic and orthographic parafoveal processing by bilingual L1 German/L2 English readers

    Get PDF
    No abstract available

    Cross-linguistic differences in parafoveal semantic and orthographic processing

    Get PDF
    In this study we investigated parafoveal processing by L1 and late L2 speakers of English (L1 German) while reading in English. We hypothesized that L2ers would make use of semantic and orthographic information parafoveally. Using the gaze contingent boundary paradigm, we manipulated six parafoveal masks in a sentence (Mark found th*e wood for the fire; * indicates the invisible boundary): identical word mask (wood), English orthographic mask (wook), English string mask (zwwl), German mask (holz), German orthographic mask (holn), and German string mask (kxfs). We found an orthographic benefit for L1ers and L2ers when the mask was orthographically related to the target word (wood vs. wook) in line with previous L1 research. English L2ers did not derive a benefit (rather an interference) when a non-cognate translation mask from their L1 was used (wood vs. holz), but did derive a benefit from a German orthographic mask (wood vs. holn). While unexpected, it may be that L2ers incur a switching cost when the complete German word is presented parafoveally, and derive a benefit by keeping both lexicons active when a partial German word is presented parafoveally (narrowing down lexical candidates). To the authors’ knowledge there is no mention of parafoveal processing in any model of L2 processing/reading, and the current study provides the first evidence for a parafoveal non-cognate orthographic benefit (but only with partial orthographic overlap) in sentence reading for L2ers. We discuss how these findings fit into the framework of bilingual word recognition theories

    Effects of speech rate on anticipatory eye movements in the Visual World Paradigm: Evidence from aging, native, and non-native language processing

    Get PDF
    Research has shown that suprasegmental cues in conjunction with visual context can lead to anticipatory (or predictive) eye movements. However, the impact of speech rate on anticipatory eye movements has received little empirical attention. The purpose of the current study was twofold. From a methodological perspective, we tested the impact of speech rate on anticipatory eye movements by systemically varying speech rate (3.5, 4.5, 5.5, and 6.0 syllables per second) in the processing of filler-gap dependencies. From a theoretical perspective, we examined two groups thought to show fewer anticipatory eye movements, and thus likely to be more impacted by speech rate. Experiment 1 compared anticipatory eye movements across the lifespan with younger (18-24 years old) and older adults (40-75 years old). Experiment 2 compared L1 speakers of English and L2 speakers of English with an L1 of German. Results showed that all groups made anticipatory eye movements. However, L2 speakers only made anticipatory eye movements at 3.5 syllables per second, older adults at 3.5 and 4.5 syllables per second, and younger adults at speech rates up to 5.5 syllables per second. At the fastest speech rate, all groups showed a marked decrease in anticipatory eye movements. This work highlights (1) the importance of speech rate on anticipatory eye movements, and (2) group-level performance differences in filler-gap prediction

    Quantum Tunneling in Nuclear Fusion

    Get PDF
    Recent theoretical advances in the study of heavy ion fusion reactions below the Coulomb barrier are reviewed. Particular emphasis is given to new ways of analyzing data, such as studying barrier distributions; new approaches to channel coupling, such as the path integral and Green function formalisms; and alternative methods to describe nuclear structure effects, such as those using the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects, higher-order couplings, and shape-phase transitions are elucidated. The current status of the fusion of unstable nuclei and very massive systems are briefly discussed.Comment: To appear in the January 1998 issue of Reviews of Modern Physics. 13 Figures (postscript file for Figure 6 is not available; a hard copy can be requested from the authors). Full text and figures are also available at http://nucth.physics.wisc.edu/preprints

    Brain structural and functional asymmetry in human situs inversus totalis

    Get PDF
    Magnetic resonance imaging was used to investigate brain structural and functional asymmetries in 15 participants with complete visceral reversal (situs inversus totalis, SIT). Language-related brain structural and functional lateralization of SIT participants, including peri-Sylvian gray and white matter asymmetries and hemispheric language dominance, was similar to those of 15 control participants individually matched for sex, age, education, and handedness. In contrast, the SIT cohort showed reversal of the brain (Yakovlevian) torque (occipital petalia and occipital bending) compared to the control group. Secondary findings suggested different asymmetry patterns between SIT participants with (n = 6) or without (n = 9) primary ciliary dyskinesia (PCD, also known as Kartagener syndrome) although the small sample sizes warrant cautious interpretation. In particular, reversed brain torque was mainly due to the subgroup with PCD-unrelated SIT and this group also included 55% left handers, a ratio close to a random allocation of handedness. We conclude that complete visceral reversal has no effect on the lateralization of brain structural and functional asymmetries associated with language, but seems to reverse the typical direction of the brain torque in particular in participants that have SIT unrelated to PCD. The observed differences in asymmetry patterns of SIT groups with and without PCD seem to suggest that symmetry breaking of visceral laterality, brain torque, and language dominance rely on different mechanisms

    Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host

    Effects of halogens on European air-quality

    Get PDF
    Halogens (Cl, Br) have a profound influence on stratospheric ozone (O3). They (Cl, Br and I) have recently also been shown to impact the troposphere, notably by reducing the mixing ratios of O3 and OH. Their potential for impacting regional air-quality is less well understood. We explore the impact of halogens on regional pollutants (focussing on O3) with the European grid of the GEOS-Chem model (0.25° × 0.3125°). It has recently been updated to include a representation of halogen chemistry. We focus on the summer of 2015 during the ICOZA campaign at the Weybourne Atmospheric Observatory on the North Sea coast of the UK. Comparisons between these observations together with those from the UK air-quality network show that the model has some skill in representing the mixing ratios/concentration of pollutants during this period. Although the model has some success in simulating the Weybourne ClNO2 observations, it significantly underestimates ClNO2 observations reported at inland locations. It also underestimates mixing ratios of IO, OIO, I2 and BrO, but this may reflect the coastal nature of these observations. Model simulations, with and without halogens, highlight the processes by which halogens can impact O3. Throughout the domain O3 mixing ratios are reduced by halogens. In northern Europe this is due to a change in the background O3 advected into the region, whereas in southern Europe this is due to local chemistry driven by Mediterranean emissions. The proportion of hourly O3 above 50 nmol mol-1 in Europe is reduced from 46% to 18% by halogens. ClNO2 from N2O5 uptake onto sea-salt leads to increases in O3 mixing ratio, but these are smaller than the decreases caused by the bromine and iodine. 12% of ethane and 16% of acetone within the boundary layer is oxidised by Cl. Aerosol response to halogens is complex with small (∼10%) reductions in PM2.5 in most locations. A lack of observational constraints coupled to large uncertainties in emissions and chemical processing of halogens make these conclusions tentative at best. However, the results here point to the potential for halogen chemistry to influence air quality policy in Europe and other parts of the world

    The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects

    Get PDF
    We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,γ γ = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p
    corecore