563 research outputs found

    Evolution of Cluster Ellipticals at 0.2 < z < 1.2 from Hubble Space Telescope Imaging

    Get PDF
    Two-dimensional surface photometry derived from Hubble Space Telescope imaging is presented for a sample of 225 early-type galaxies (assumed to be cluster members) in the fields of 9 clusters at redshifts 0.17<z<1.210.17 < z < 1.21. The 94 luminous ellipticals (MAB(B)<20M_{AB}(B)<-20; selected by morphology alone with no reference to color) form tight sequences in the size-luminosity plane. The position of these sequences shifts, on average, with redshift so that an object of a given size at z=0.55 is brighter by ΔM(B)=0.57±0.13\Delta M(B)=-0.57 \pm 0.13 mag than its counterpart (measured with the same techniques) in nearby clusters. At z=0.9 the shift is ΔM(B)=0.96±0.22\Delta M(B)=-0.96 \pm 0.22 mag. If the relation between size and luminosity is universal so that the local cluster galaxies represent the evolutionary endpoints of those at high redshift, and if the size-luminosity relation is not modified by dynamical processes then this population of galaxies has undergone significant luminosity evolution since z=1 consistent with expectations based on models of passively evolving, old stellar populations.Comment: 7 pages, 3 figures, and 1 Tabl

    Parabolic curves for diffeomorphisms in C2

    Get PDF
    We give a simple proof of the existence of parabolic curves for diffeomorphisms in (C 2 , 0) tangent to the identity with isolated fixed point

    Optimizing Phase Settings of High-Frequency Voltage Regulators for Power Delivery Applications

    Get PDF
    Every new computer server introduced to the market aims at delivering the best tradeoff between performance and power consumption. This goal is crucial in the case of servers for cloud computing hardware infrastructure. In this context, power delivery (PD) experts are adopting higher frequency switching voltage regulators (VR) to reduce platform’s cost as well as total cost of ownership (TCO). Because of this fact, the real estate of components, such as voltage regulators and output inductors, is shrinking as VR frequency increases. As a consequence, achieving the best performance of the VR implies looking into phase shedding schemes, as well as EM coupled inductor design, among other techniques, to mitigate power losses. This paper focuses on the study of the best angle arrangement possible for high frequency VR applications, by exploring angle settings under light load scenarios, aiming to minimize VR’s power loss and output’s voltage ripple

    Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy

    Full text link
    [EN] Mineral transformations of the gypsum-anhydrite system under microwave heating have been studied using in situ dielectric thermal analysis (MW-DETA) and Raman spectroscopy simultaneously. The dielectric properties of samples that were measured under microwave heating provided thorough information about the dynamics of the gypsum-anhydrite system transformations and its significance from the mineralogical point of view. In particular, the MW-DETA technique revealed a new intermediate phase with a gamma-anhydrite structure. This phase corresponds to the soluble stage of gamma-anhydrite, and it is characterized by a high ionic charge inside the crystal channels. The complete sequence is gypsum -> 0.625-subhydrate -> bassanite -> hydro gamma-anhydrite -> anhydrous gamma-anhydrite -> beta-anhydrite. The transformations were also assessed using DSC, TG, DTA and dielectric measurements at room temperature, as well as other techniques including X-ray powder diffraction (XRPD) and high-temperature XRD (HT-XRD). Correlations between the dielectric properties with temperature and the rest of the techniques elucidated the heating mechanisms of this material under microwave energy during the different stages. The in situ combination of the MW-DETA and the Raman analysis appears to be a powerful technique, providing new insights about the mechanisms which govern the volumetric heating of this and other materials.López-Buendía, AM.; García-Baños, B.; Urquiola, MM.; Catalá Civera, JM.; Penaranda-Foix, FL. (2020). Evidence of a new phase in gypsum-anhydrite transformations under microwave heating by in situ dielectric analysis and Raman spectroscopy. Physical Chemistry Chemical Physics. 22(47):27713-27723. https://doi.org/10.1039/d0cp04926cS27713277232247A. C. Metaxas and R. J.Meredith , Industrial microwave heating , Peregrinus , London , 1983Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78-97. doi:10.1016/j.compositesa.2015.10.035Gutiérrez, J. D., Catalá-Civera, J. M., Bows, J., & Peñaranda-Foix, F. L. (2017). Dynamic measurement of dielectric properties of food snack pellets during microwave expansion. Journal of Food Engineering, 202, 1-8. doi:10.1016/j.jfoodeng.2017.01.021Kingman, S. W., & Rowson, N. A. (1998). Microwave treatment of minerals-a review. Minerals Engineering, 11(11), 1081-1087. doi:10.1016/s0892-6875(98)00094-6Kingman, S. W. (2006). Recent developments in microwave processing of minerals. International Materials Reviews, 51(1), 1-12. doi:10.1179/174328006x79472Lovás, M., Kováčová, M., Dimitrakis, G., Čuvanová, S., Znamenáčková, I., & Jakabský, Š. (2010). Modeling of microwave heating of andesite and minerals. International Journal of Heat and Mass Transfer, 53(17-18), 3387-3393. doi:10.1016/j.ijheatmasstransfer.2010.03.012S. M. J. Koleini and K.Barani in The development and application of microwave heating , ed. Wenbin C. , IntechOpen , London , 2012 , ch. 4, p. 79A. M. López-Buendía , B.García-Baños , J.Bastida , G.Llorens-Vallés , M. M.Urquiola and J. M.Catalá-Civera , presented at 3GCMEA, Cartagena, Spain, July 2016Reinosa, J. J., García-Baños, B., Catalá-Civera, J. M., & Fernández, J. F. (2019). A step ahead on efficient microwave heating for kaolinite. Applied Clay Science, 168, 237-243. doi:10.1016/j.clay.2018.11.001Kitchen, H. J., Vallance, S. R., Kennedy, J. L., Tapia-Ruiz, N., Carassiti, L., Harrison, A., … Gregory, D. H. (2013). Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing. Chemical Reviews, 114(2), 1170-1206. doi:10.1021/cr4002353Sun, J., Wang, W., & Yue, Q. (2016). Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials, 9(4), 231. doi:10.3390/ma9040231Wu, L., Zhang, Y., Wang, F., Ma, W., Xie, T., & Huang, K. (2019). An On-Line System for High Temperature Dielectric Property Measurement of Microwave-Assisted Sintering Materials. Materials, 12(4), 665. doi:10.3390/ma12040665R. N. Clarke , A. P.Gregory , D.Cannell , M.Patrick , S.Wylie , I.Youngs and G.Hill , Technical Report, Institute of Measurement and Control/National Physical Laboratory, 2003Garcia-Baños, B., Catalá-Civera, J., Peñaranda-Foix, F., Plaza-González, P., & Llorens-Vallés, G. (2016). In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement. Materials, 9(5), 349. doi:10.3390/ma9050349García-Baños, B., Catalá-Civera, J. M., Sánchez, J. R., Navarrete, L., López-Buendía, A. M., & Schmidt, L. (2020). High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating. Metals, 10(5), 693. doi:10.3390/met10050693Catala-Civera, J. M., Canos, A. J., Plaza-Gonzalez, P., Gutierrez, J. D., Garcia-Banos, B., & Penaranda-Foix, F. L. (2015). Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. IEEE Transactions on Microwave Theory and Techniques, 63(9), 2905-2914. doi:10.1109/tmtt.2015.2453263Hildyard, R. C., Llana-Funez, S., Wheeler, J., Faulkner, D. R., & Prior, D. J. (2011). Electron Backscatter Diffraction (EBSD) Analysis of Bassanite Transformation Textures and Crystal Structure Produced from Experimentally Deformed and Dehydrated Gypsum. Journal of Petrology, 52(5), 839-856. doi:10.1093/petrology/egr004Azam, S. (2006). Study on the geological and engineering aspects of anhydrite/gypsum transition in the Arabian Gulf coastal deposits. Bulletin of Engineering Geology and the Environment, 66(2), 177-185. doi:10.1007/s10064-006-0053-2Tesárek, P., Drchalová, J., Kolísko, J., Rovnaníková, P., & Černý, R. (2007). Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Construction and Building Materials, 21(7), 1500-1509. doi:10.1016/j.conbuildmat.2006.05.009Singh, M., & Garg, M. (2000). Making of anhydrite cement from waste gypsum. Cement and Concrete Research, 30(4), 571-577. doi:10.1016/s0008-8846(00)00209-xCharola, A. E., Pühringer, J., & Steiger, M. (2006). Gypsum: a review of its role in the deterioration of building materials. Environmental Geology, 52(2), 339-352. doi:10.1007/s00254-006-0566-9K. K. Kelley , C. T.Anderson and J. C.Southartd , USD Interior Tech, Paper 625Valimbe, P. (2002). Effects of water content and temperature on the crystallization behavior of FGD scrubber sludge. Fuel, 81(10), 1297-1304. doi:10.1016/s0016-2361(02)00045-5James, A. N., & Lupton, A. R. R. (1978). Gypsum and anhydrite in foundations of hydraulic structures. Géotechnique, 28(3), 249-272. doi:10.1680/geot.1978.28.3.249Ko, S., Olgaard, D. L., & Briegel, U. (1995). The transition from weakening to strengthening in dehydrating gypsum: Evolution of excess pore pressures. Geophysical Research Letters, 22(9), 1009-1012. doi:10.1029/95gl00886Anonymous Mineral Commodity Summaries 2019, Reston, VA, 2019W. Chun , S.Kim and K.Lee , ‘EuroDrying2011’, 2011Kasparaitė, D., Lukošenkinaitė, L., Valančius, Z., Kybartienė, N., & Leškevičienė, V. (2013). Microwave use of gypsum dehydration feasibility study. Chemical Technology, 63(1). doi:10.5755/j01.ct.63.1.4518Boeyens, J. C. A., & Ichharam, V. V. H. (2002). Redetermination of the crystal structure of calcium sulphate dihydrate, CaSO4 · 2H2O. Zeitschrift für Kristallographie - New Crystal Structures, 217(JG), 9-10. doi:10.1524/ncrs.2002.217.jg.9Schofield, P. F., Knight, K. S., & Stretton, I. C. (1996). Thermal expansion of gypsum investigated by neutron powder diffraction. American Mineralogist, 81(7-8), 847-851. doi:10.2138/am-1996-7-807Schmidt, H., Paschke, I., Freyer, D., & Voigt, W. (2011). Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O. Acta Crystallographica Section B Structural Science, 67(6), 467-475. doi:10.1107/s0108768111041759Bezou, C., Nonat, A., Mutin, J.-C., Christensen, A. N., & Lehmann, M. S. (1995). Investigation of the Crystal Structure of γ-CaSO4, CaSO4 · 0.5 H2O, and CaSO4 · 0.6 H2O by Powder Diffraction Methods. Journal of Solid State Chemistry, 117(1), 165-176. doi:10.1006/jssc.1995.1260Christensen, A. N., Olesen, M., Cerenius, Y., & Jensen, T. R. (2008). Formation and Transformation of Five Different Phases in the CaSO4−H2O System: Crystal Structure of the Subhydrate β-CaSO4·0.5H2O and Soluble Anhydrite CaSO4. Chemistry of Materials, 20(6), 2124-2132. doi:10.1021/cm7027542Follner, S., Wolter, A., Preusser, A., Indris, S., Silber, C., & Follner, H. (2002). The Setting Behaviour of α- and β-CaSO4 · 0,5 H2O as a Function of Crystal Structure and Morphology. Crystal Research and Technology, 37(10), 1075-1087. doi:10.1002/1521-4079(200210)37:103.0.co;2-xMORRIS, R. J. (1963). X-ray Diffraction Identification of the Alpha- and Beta-forms of Calcium Sulphate Hemihydrate. Nature, 198(4887), 1298-1299. doi:10.1038/1981298a0Vellmer, C., Middendorf, B., & Singh, N. B. (2006). Hydration of α-hemihydrate in the presence of carboxylic acids. Journal of Thermal Analysis and Calorimetry, 86(3), 721-726. doi:10.1007/s10973-005-7224-4Prieto-Taboada, N., Larrañaga, A., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, M. A., & Madariaga, J. M. (2015). The relevance of the combination of XRD and Raman spectroscopy for the characterization of the CaSO4–H2O system compounds. Microchemical Journal, 122, 102-109. doi:10.1016/j.microc.2015.04.010Sipple, E.-M., Bracconi, P., Dufour, P., & Mutin, J.-C. (2001). Microstructural modifications resulting from the dehydration of gypsum. Solid State Ionics, 141-142, 447-454. doi:10.1016/s0167-2738(01)00755-xCarbone, M., Ballirano, P., & Caminiti, R. (2008). Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. European Journal of Mineralogy, 20(4), 621-627. doi:10.1127/0935-1221/2008/0020-1826A. M. López-Buendía , C.Suesta , J. M.Cuevas , M. M.Urquiola and J.Bastida , presented at 12th EMABM, 2009, 443Zhao, Z. M., Wang, C. J., Li, C. Q., & Zhang, X. M. (2013). On Experimental Study of Development Calcined Gypsum from Flue Gas Desulfurization by Microwave Technology. Applied Mechanics and Materials, 368-370, 780-784. doi:10.4028/www.scientific.net/amm.368-370.780Kirfel, A., & Will, G. (1980). Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 36(12), 2881-2890. doi:10.1107/s0567740880010461Gracia, L., Beltrán, A., Errandonea, D., & Andrés, J. (2011). CaSO4 and Its Pressure-Induced Phase Transitions. A Density Functional Theory Study. Inorganic Chemistry, 51(3), 1751-1759. doi:10.1021/ic202056bCrichton, W. A., Parise, J. B., Antao, S. M., & Grzechnik, A. (2005). Evidence for monazite-, barite-, and AgMnO4(distorted barite)-type structures of CaSO4at high pressure and temperature. American Mineralogist, 90(1), 22-27. doi:10.2138/am.2005.1654Pedersen, B. F., & Semmingsen, D. (1982). Neutron diffraction refinement of the structure of gypsum, CaSO4.2H2O. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 38(4), 1074-1077. doi:10.1107/s0567740882004993De la Torre, Á. G., López-Olmo, M.-G., Álvarez-Rua, C., García-Granda, S., & Aranda, M. A. G. (2004). Structure and microstructure of gypsum and its relevance to Rietveld quantitative phase analyses. Powder Diffraction, 19(3), 240-246. doi:10.1154/1.1725254Hartman, P. (1989). On the unit cell dimensions and bond lengths of anhydrite. European Journal of Mineralogy, 1(5), 721-722. doi:10.1127/ejm/1/5/0721Morikawa, H., Minato, I., Tomita, T., & Iwai, S. (1975). Anhydrite: a refinement. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(8), 2164-2165. doi:10.1107/s0567740875007145Prieto-Taboada, N., Gómez-Laserna, O., Martínez-Arkarazo, I., Olazabal, M. Á., & Madariaga, J. M. (2014). Raman Spectra of the Different Phases in the CaSO4–H2O System. Analytical Chemistry, 86(20), 10131-10137. doi:10.1021/ac501932fAntao, S. M. (2011). Crystal-structure analysis of four mineral samples of anhydrite, CaSO4, using synchrotron high-resolution powder X-ray diffraction data. Powder Diffraction, 26(4), 326-330. doi:10.1154/1.3659285Borg, I. Y., & Smith, D. K. (1975). A high pressure polymorph of CaSO4. Contributions to Mineralogy and Petrology, 50(2), 127-133. doi:10.1007/bf00373332Mukhopadhyay, A., Cole, W. T. S., & Saykally, R. J. (2015). The water dimer I: Experimental characterization. Chemical Physics Letters, 633, 13-26. doi:10.1016/j.cplett.2015.04.016Kaatze, U. (1989). Complex permittivity of water as a function of frequency and temperature. Journal of Chemical & Engineering Data, 34(4), 371-374. doi:10.1021/je00058a001Ellison, W. J. (2007). Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range 0–25THz and the Temperature Range 0–100°C. Journal of Physical and Chemical Reference Data, 36(1), 1-18. doi:10.1063/1.2360986García-Baños, B., Reinosa, J. J., Peñaranda-Foix, F. L., Fernández, J. F., & Catalá-Civera, J. M. (2019). Temperature Assessment Of Microwave-Enhanced Heating Processes. Scientific Reports, 9(1). doi:10.1038/s41598-019-47296-0Gutierrez-Cano, J. D., Plaza-Gonzalez, P., Canos, A. J., Garcia-Banos, B., Catala-Civera, J. M., & Penaranda-Foix, F. L. (2020). A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave Frequencies. IEEE Transactions on Instrumentation and Measurement, 69(6), 3595-3605. doi:10.1109/tim.2019.2941038Berenblut, B. J., Dawson, P., & Wilkinson, G. R. (1973). A comparison of the Raman spectra of anhydrite (CaSO4) and gypsum (CaSO4).2H2O). Spectrochimica Acta Part A: Molecular Spectroscopy, 29(1), 29-36. doi:10.1016/0584-8539(73)80005-4Simon, B., & Bienfait, M. (1965). Structure et mécanisme de croissance du gypse. Acta Crystallographica, 19(5), 750-756. doi:10.1107/s0365110x65004310Massaro, F. R., Rubbo, M., & Aquilano, D. (2010). Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 1. A Syncretic Strategy to Calculate the Morphology of Crystals. Crystal Growth & Design, 10(7), 2870-2878. doi:10.1021/cg900660vKhasanov, R. A., Nizamutdinov, N. M., Khasanova, N. M., Gubaĭdullin, A. T., & Vinokurov, V. M. (2008). Low-temperature dehydration of gypsum single crystals. Crystallography Reports, 53(5), 806-811. doi:10.1134/s1063774508050143W. Smykatz-Kloss , K.Heide and W.Klinke in Handbook of Thermal Analysis and Calorimetry , ed. M. E. Brown and P. K. Gallagher , Elsevier , 2003 , ch. 11, vol. 2, p. 451Carvalho, M. T. M., Leles, M. I. G., & Tubino, R. M. C. (2008). TG and DSC studies on plaster residues as recycled material. Journal of Thermal Analysis and Calorimetry, 91(2), 621-625. doi:10.1007/s10973-006-8169-yB. Gacía-Baños , A. M.López-Buendía , C.Suesta , J. M.Catalá-Civera ., J.Jiménez Reinosa and J. F.Fernández , 15th International Conference on Microwave and High Frequency Heating , 2015, Krakow (Poland), p. 107Alford, N. M., Breeze, J., Wang, X., Penn, S. J., Dalla, S., Webb, S. J., … Aupi, X. (2001). Dielectric loss of oxide single crystals and polycrystalline analogues from 10 to 320 K. Journal of the European Ceramic Society, 21(15), 2605-2611. doi:10.1016/s0955-2219(01)00324-7Baker-Jarvis, J., & Kim, S. (2012). The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. Journal of Research of the National Institute of Standards and Technology, 117, 1. doi:10.6028/jres.117.00

    High-Resolution Detection of Rock-Forming Minerals by Permittivity Measurements with a Near-Field Scanning Microwave Microscope

    Full text link
    [EN] The identification of the minerals composing rocks and their dielectric characterization is essential for the utilization of microwave energy in the rock industry. This paper describes the use of a near-field scanning microwave microscope with enhanced sensitivity for non-invasive measurements of permittivity maps of rock specimens at the micrometer scale in non-contact mode. The microwave system comprises a near-field probe, an in-house single-port vectorial reflectometer, and all circuitry and software needed to make a stand-alone, portable instrument. The relationship between the resonance parameters of the near-field probe and the dielectric properties of materials was determined by a combination of classical cavity perturbation theory and an image charge model. The accuracy of this approach was validated by a comparison study with reference materials. The device was employed to determine the permittivity maps of a couple of igneous rock specimens with low-loss and high-loss minerals. The dielectric results were correlated with the minerals comprising the samples and compared with the dielectric results reported in the literature, with excellent agreements.This paper has been financially supported through the grant reference BES-2016-077296 of the call Convocatoria de las ayudas para contratos predoctorales para la formacion de doctores de 2016 by Ministerio de Economia y Competitividad (MINECO) and by European Social Funds (ESF) of European Union, and the project SEDMICRON-TEC2015-70272-R (MINECO/FEDER) supported by Ministerio de Economia y Competitividad (MINECO) and by European Regional Development Funds (ERDF) of European Union.Gutiérrez Cano, JD.; Catalá Civera, JM.; López Buendía, ÁM.; Plaza González, PJ.; Penaranda-Foix, FL. (2022). High-Resolution Detection of Rock-Forming Minerals by Permittivity Measurements with a Near-Field Scanning Microwave Microscope. Sensors. 22(3):1-17. https://doi.org/10.3390/s2203113811722

    Molecular analysis of pancreatic cystic neoplasm in routine clinical practice

    Full text link
    BACKGROUND Cystic pancreatic lesions consist of a wide variety of lesions that are becoming increasingly diagnosed with the growing use of imaging techniques. Of these, mucinous cysts are especially relevant due to their risk of malignancy. However, morphological findings are often suboptimal for their differentiation. Endoscopic ultrasound fine-needle aspiration (EUS-FNA) with molecular analysis has been suggested to improve the diagnosis of pancreatic cysts. AIM To determine the impact of molecular analysis on the detection of mucinous cysts and malignancy. METHODS An 18-month prospective observational study of consecutive patients with pancreatic cystic lesions and an indication for EUS-FNA following European clinical practice guidelines was conducted. These cysts included those > 15 mm with unclear diagnosis, and a change in follow-up or with concerning features in which results might change clinical management. EUS-FNA with cytological, biochemical and glucose and molecular analyses with next-generation sequencing were performed in 36 pancreatic cysts. The cysts were classified as mucinous and non-mucinous by the combination of morphological, cytological and biochemical analyses when surgery was not performed. Malignancy was defined as cytology positive for malignancy, high-grade dysplasia or invasive carcinoma on surgical specimen, clinical or morphological progression, metastasis or death related to neoplastic complications during the 6-mo follow-up period. Next-generation sequencing results were compared for cyst type and malignancy. RESULTS Of the 36 lesions included, 28 (82.4%) were classified as mucinous and 6 (17.6%) as non-mucinous. Furthermore, 5 (13.9%) lesions were classified as malignant. The amount of deoxyribonucleic acid obtained was sufficient for molecular analysis in 25 (69.4%) pancreatic cysts. The amount of intracystic deoxyribonucleic acid was not statistically related to the cyst fluid volume obtained from the lesions. Analysis of KRAS and/or GNAS showed 83.33% [95% confidence interval (CI): 63.34-100] sensitivity, 60% (95%CI: 7.06-100) specificity, 88.24% (95%CI: 69.98-100) positive predictive value and 50% (95%CI: 1.66-98.34) negative predictive value (P = 0.086) for the diagnosis of mucinous cystic lesions. Mutations in KRAS and GNAS were found in 2/5 (40%) of the lesions classified as non-mucinous, thus recategorizing those lesions as mucinous neoplasms, which would have led to a modification of the follow-up plan in 8% of the cysts in which molecular analysis was successfully performed. All 4 (100%) malignant cysts in which molecular analysis could be performed had mutations in KRAS and/or GNAS, although they were not related to malignancy (P > 0.05). None of the other mutations analyzed could detect mucinous or malignant cysts with statistical significance (P > 0.05). CONCLUSION Molecular analysis can improve the classification of pancreatic cysts as mucinous or non-mucinous. Mutations were not able to detect malignant lesion

    Lenalidomide-dexamethasone versus observation in high-risk smoldering myeloma after 12 years of median follow-up time: A randomized, open-label study

    Get PDF
    [Background]: Smoldering multiple myeloma (SMM) is a heterogeneous disease in terms of progression to myeloma (MM), but its standard of care continues to be observation. [Methods]: The QuiRedex phase 3 trial initiated in 2007 included 119 high-risk patients with SMM randomized to treatment or observation. Treatment consisted of nine 4-week induction cycles (lenalidomide [Rd], 25 mg on days 1–21 plus dexamethasone, 20 mg on days 1–4 and 12–15), followed by maintenance (R, 10 mg on days 1–21) for up to 2 years. The primary end-point was time to progression (TTP) to myeloma based on per protocol population. Secondary end-points were overall survival (OS), response rate, and safety. An update of the trial after a long-term follow-up is presented here. This trial was registered with ClinicalTrials.gov (NCT00480363). [Findings]: After a median follow-up time of 12.5 years (range: 10.4–13.6), the median TTP to MM was 2.1 years in the observation arm and 9.5 years in the Rd arm (HR: 0.28, 95% CI: 0.18–0.44, p < 0.0001). The median OS was 8.5 years in the abstention arm and not reached in the Rd group (HR: 0.57, 95% CI: 0.34–0.95, p = 0.032). Patients who progressed received optimized treatments according to the standards of care, and the OS from progression was comparable in both arms (p = 0.96). [Interpretation]: This analysis confirms that early treatment with Rd for high-risk SMM translates into a sustained benefit in both TTP and OS.This study was also supported by the Cooperative Research Thematic Network grant RD12/0036/0058 and RD12/0036/0046 and Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria, Spain. (FIS:PI12/02311/01761/01569)
    corecore