3,551 research outputs found
Recommended from our members
Self-organizing communication in language games
From the point of view of semiotic dynamics language is an evolving complex dynamical system. In this perspective, unrevealing the mechanisms that allow for the birth of shared conventions is a major issue. Here we describe a very simple model in which agents negotiate conventions and reach a global agreement without any intervention from the outside. In particular we focus on the possibility of predicting on which of the several competing conventions the agreement is reached. We find from simulations that early created conventions are favored in the competition process and this advantage can be quantified. Beyond the specific results presented here, we think that this paper provides an example of a new way of investigating language features where simple models allow for the investigation of precise problems and, possibly, for analytical approaches
A Nexafs Study of Nitric Oxide Layers Adsorbed from a nitrite Solution onto a Pt(111) Surface
NO molecules adsorbed on a Pt(111) surface from dipping in an acidic nitrite
solution are studied by near edge X-ray absorption fine structure spectroscopy
(NEXAFS), X-ray photoelectron spectroscopy (XPS), low energy electron
diffraction (LEED) and scanning tunnelling microscopy (STM) techniques. LEED
patterns and STM images show that no long range ordered structures are formed
after NO adsorption on a Pt(111) surface. Although the total NO coverage is
very low, spectroscopic features in N K-edge and O K-edge absorption spectra
have been singled out and related to the different species induced by this
preparation method. From these measurements it is concluded that the NO
molecule is adsorbed trough the N atom in an upright conformation. The maximum
saturation coverage is about 0.3 monolayers, and although nitric oxide is the
major component, nitrite and nitrogen species are slightly co-adsorbed on the
surface. The results obtained from this study are compared with those
previously reported in the literature for NO adsorbed on Pt(111) under UHV
conditions
ROUNDHOUSE KICK WITH AND WITHOUT IMPACT IN KARATEKA OF DIFFERENT TECHNICAL LEVEL
The purpose of this study was to compare two different Karate roundhouse kicks performed by athletes of different technical level. The combination of high movement velocities and a high technical difficulty, qualify these actions as a good model to quantify the ability of a Karateka to execute complex movements. The first kick, directed to the face, entails a strong braking action to avoid the impact (NI), the other, directed to the chest, is concluded by an impact (IM). Technical aspects and the role of muscular co-activation as joint protector were investigated in six top level Karateka (KA) and six practicing karate amateurs (CO), by estimating joint kinematics and neuromuscular activity patterns. KA presented a faster execution for both tasks, prevalently due to a faster knee extension, supported by a low co-activation of the antagonist Biceps Femoris. This behaviour confirms that elite KA tend to lower the co-activation of antagonist muscles during fast movements, partially in contrast with the antagonists possible role in maintaining knee stability. The NI task, requiring higher technical competence and entailing a high target, is performed by KA athletes using a peculiar technique, based on a wide hip flexion-extension range, with a peak hip ab-adduction occurring earlier than in CO. A lower co-activation presented by CO during knee flexion is presumably due to their difficulty in mastering this complex kick
Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers
Abstract Calcium oxalates are insoluble colorless or whitish salts constituting noble patina, on both natural and artificial stone artworks' surfaces, the presence of which is extremely valued. The oxalates are not considered detrimental to the substrate, however, being often accompanied by other substances such as gypsum, silicates, and pigmented particles. They may form very adherent, relatively thick and colored layers creating disfiguring effects and hindering legibility of the pictorial surface. For this reason it may be appropriate to diminish their thickness, but patina's partial preservation is particularly required calling for extremely gradual and controllable cleaning approach. Thinning of calcium oxalate patina from a detached 16th century fresco (from Sansepolcro) was performed through the use of laser (Nd:YAG and Er:YAG) systems and chemical means (Carbogel loaded 5 wt.% of tetrasodium EDTA). Optical coherence tomography (OCT), providing a non-invasive stratigraphic cross-section of the examined surface, allowed to distinguish the oxalate from the underlying original layers and therefore to have an overview about its distribution, to numerically evaluate patina's thickness range and to provide the information on the amount of the material both removed and left on the artwork's surface. Laser scanning conoscopic microprofilometry allowed for a high-density sampling of the artwork's surface providing a three-dimensional model of the surface pattern. The obtained 3D models were used to estimate the amount of material removed and to compare them with those provided by OCT. The successful exploitation of the proposed exceptional cleaning monitoring methodology may be seen as an innovative and valid support for the restorers in the conservation of mural painting or other surfaces covered by oxalate layers and may pilot more targeted, cautious and respectful cleaning intervention
Sharp transition towards shared vocabularies in multi-agent systems
What processes can explain how very large populations are able to converge on
the use of a particular word or grammatical construction without global
coordination? Answering this question helps to understand why new language
constructs usually propagate along an S-shaped curve with a rather sudden
transition towards global agreement. It also helps to analyze and design new
technologies that support or orchestrate self-organizing communication systems,
such as recent social tagging systems for the web. The article introduces and
studies a microscopic model of communicating autonomous agents performing
language games without any central control. We show that the system undergoes a
disorder/order transition, going trough a sharp symmetry breaking process to
reach a shared set of conventions. Before the transition, the system builds up
non-trivial scale-invariant correlations, for instance in the distribution of
competing synonyms, which display a Zipf-like law. These correlations make the
system ready for the transition towards shared conventions, which, observed on
the time-scale of collective behaviors, becomes sharper and sharper with system
size. This surprising result not only explains why human language can scale up
to very large populations but also suggests ways to optimize artificial
semiotic dynamics.Comment: 12 pages, 4 figure
Extreme value laws in dynamical systems under physical observables
Extreme value theory for chaotic dynamical systems is a rapidly expanding
area of research. Given a system and a real function (observable) defined on
its phase space, extreme value theory studies the limit probabilistic laws
obeyed by large values attained by the observable along orbits of the system.
Based on this theory, the so-called block maximum method is often used in
applications for statistical prediction of large value occurrences. In this
method, one performs inference for the parameters of the Generalised Extreme
Value (GEV) distribution, using maxima over blocks of regularly sampled
observations along an orbit of the system. The observables studied so far in
the theory are expressed as functions of the distance with respect to a point,
which is assumed to be a density point of the system's invariant measure.
However, this is not the structure of the observables typically encountered in
physical applications, such as windspeed or vorticity in atmospheric models. In
this paper we consider extreme value limit laws for observables which are not
functions of the distance from a density point of the dynamical system. In such
cases, the limit laws are no longer determined by the functional form of the
observable and the dimension of the invariant measure: they also depend on the
specific geometry of the underlying attractor and of the observable's level
sets. We present a collection of analytical and numerical results, starting
with a toral hyperbolic automorphism as a simple template to illustrate the
main ideas. We then formulate our main results for a uniformly hyperbolic
system, the solenoid map. We also discuss non-uniformly hyperbolic examples of
maps (H\'enon and Lozi maps) and of flows (the Lorenz63 and Lorenz84 models).
Our purpose is to outline the main ideas and to highlight several serious
problems found in the numerical estimation of the limit laws
Robot-era project: Preliminary results on the system usability
The European project Robot-Era is an ambitious integrated project (FP7-ICT-2011.5.4), which objective is the development of advanced robotic services, integrated in intelligent environments, to provide independent living to older people. In order to guarantee the matching of the users� need and the demands, two loops of experimentation were conceived, in realistic and real setting. The aim of the paper is to described the methods applied and the main results coming from the first experimental loop, concerning the degree of usability of the interfaces and provide guidelines for testing socially assistive robots with older people. � Springer International Publishing Switzerland 2015
- …