1,208 research outputs found

    Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions

    Full text link
    Most analyses of dark matter within supersymmetry assume the entire cold dark matter arising only from weakly interacting neutralinos. We study a new class of models consisting of U(1)nU(1)^n hidden sector extensions of the MSSM that includes several stable particles, both fermionic and bosonic, which can be interpreted as constituents of dark matter. In one such class of models, dark matter is made up of both a Majorana dark matter particle, i.e., a neutralino, and a Dirac fermion with the current relic density of dark matter as given by WMAP being composed of the relic density of the two species. These models can explain the PAMELA positron data and are consistent with the anti-proton flux data, as well as the photon data from FERMI-LAT. Further, it is shown that such models can also simultaneously produce spin independent cross sections which can be probed in CDMS-II, XENON-100 and other ongoing dark matter experiments. The implications of the models at the LHC and at the NLC are also briefly discussed.Comment: Journal: Physical Review D, Latex 32 pages, 4 eps figure

    Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results, and Dark Matter

    Full text link
    LHC-7 has narrowed down the mass range of the light Higgs boson. This result is consistent with the supergravity unification framework, and the current Higgs boson mass window implies a rather significant loop correction to the tree value pointing to a relatively heavy scalar sparticle spectrum with universal boundary conditions. It is shown that the largest value of the Higgs boson mass is obtained on the Hyperbolic Branch of radiative breaking. The implications of light Higgs boson in the broader mass range of 115 GeV to 131 GeV and a narrower range of 123 GeV to 127 GeV are explored in the context of the discovery of supersymmetry at LHC-7 and for the observation of dark matter in direct detection experiments.Comment: 8 pages, 5 figure

    Low Mass Gluino within the Sparticle Landscape, Implications for Dark Matter, and Early Discovery Prospects at LHC-7

    Full text link
    We analyze supergravity models that predict a low mass gluino within the landscape of sparticle mass hierarchies. The analysis includes a broad class of models that arise in minimal and in non-minimal supergravity unified frameworks and in extended models with additional U(1)XnU(1)^n_X hidden sector gauge symmetries. Gluino masses in the range (350700)(350-700) GeV are investigated. Masses in this range are promising for early discovery at the LHC at s=7\sqrt s =7 TeV (LHC-7). The models exhibit a wide dispersion in the gaugino-Higgsino eigencontent of their LSPs and in their associated sparticle mass spectra. A signature analysis is carried out and the prominent discovery channels for the models are identified with most models needing only 1fb1\sim 1 \rm fb^{-1} for discovery at LHC-7. In addition, significant variations in the discovery capability of the low mass gluino models are observed for models in which the gluino masses are of comparable size due to the mass splittings in different models and the relative position of the light gluino within the various sparticle mass hierarchies. The models are consistent with the current stringent bounds from the Fermi-LAT, CDMS-II, XENON100, and EDELWEISS-2 experiments. A subclass of these models, which include a mixed-wino LSP and a Higgsino LSP, are also shown to accommodate the positron excess seen in the PAMELA satellite experiment.Comment: 37 pages, 8 figures, Published in PR

    Excess Observed in CDF Bs0μ+μB^0_s \to \mu^{+} \mu^{-} and SUSY at the LHC

    Full text link
    The recent excess observed by CDF in Bs0μ+μB^0_s \to \mu^{+} \mu^{-} is interpreted in terms of a possible supersymmetric origin. An analysis is given of the parameter space of mSUGRA and non-universal SUGRA models under the combined constraints from LHC-7 with 165 pb1^{-1} of integrated luminosity, under the new XENON-100 limits on the neutralino-proton spin independent cross section and under the CDF Bs0μ+μB^0_s \to \mu^{+} \mu^{-} 90% C.L. limit reported to arise from an excess number of dimuon events. It is found that the predicted value of the branching ratio Bs0μ+μB^0_s \to \mu^{+} \mu^{-} consistent with all the constraints contains the following set of NLSPs: chargino, stau, stop or CP odd (even) Higgs. The lower bounds of sparticles, including those from the LHC, XENON and CDF Bs0μ+μB^0_s\to \mu^+\mu^- constraint, are exhibited and the shift in the allowed range of sparticle masses arising solely due to the extra constraint from the CDF result is given. It is pointed out that the two sided CDF 90% C.L. limit puts upper bounds on sparticle masses. An analysis of possible signatures for early discovery at the LHC is carried out corresponding to the signal region in Bs0μ+μB^0_s \to \mu^{+} \mu^{-}. Implications of GUT-scale non-universalities in the gaugino and Higgs sectors are discussed. If the excess seen by the CDF Collaboration is supported by further data from LHCb or D0, this new result could be a harbinger for the discovery of supersymmetry.Comment: References added, text update

    Interpreting the First CMS and ATLAS SUSY Results

    Full text link
    The CMS and the ATLAS Collaborations have recently reported on the search for supersymmetry with 35 pb1^{-1} of data and have put independent limits on the parameter space of the supergravity unified model with universal boundary conditions at the GUT scale for soft breaking, i.e., the mSUGRA model. We extend this study by examining other regions of the mSUGRA parameter space in A0A_0 and tanβ\tan\beta. Further, we contrast the reach of CMS and ATLAS with 35 pb1^{-1} of data with the indirect constraints, i.e., the constraints from the Higgs boson mass limits, from flavor physics and from the dark matter limits from WMAP. Specifically it is found that a significant part of the parameter space excluded by CMS and ATLAS is essentially already excluded by the indirect constraints and the fertile region of parameter space has yet to be explored. We also emphasize that gluino masses as low as 400 GeV but for squark masses much larger than the gluino mass remain unconstrained and further that much of the hyperbolic branch of radiative electroweak symmetry breaking, with low values of the Higgs mixing parameter μ\mu, is essentially untouched by the recent LHC analysis.Comment: 3 figure panels, 10 plot

    A Jurassic (Bathonian-Callovian) Daghanirhynchia brachiopod fauna from Jordan

    Get PDF
    A Jurassic (Bathonian-Callovian) brachiopod fauna from Jordan consists of seven rhynchonellid species all belonging to the genus Daghanirhynchia of which two are new: Daghanirhynchia rawyaensis and D. jordanica. Emended diagnoses are given for Daghanirhynchia daghaniensis and D. macfadyeni. Additional taxa described include Daghanirhynchia angulocostata, D. susanae and D. triangulata. Threedimensional reconstructions illustrate the internal morphology of the articulated shells for the first time in this genus. The material studied herein was collected from Wadi Zarqa in northwestern Jordan, almost due north of the Dead Sea, and to the east of the Rift Valley. Most species seem to be geographically restricted within the Jurassic Ethiopian Province, however specimens from Somalia and Ethiopia are larger in size than in other parts of the Province and shell size increases in stratigraphically younger specimens. The occurrence of Daghanirhynchia in India is the only appearance of the genus outside the Ethiopian Province
    corecore