Most analyses of dark matter within supersymmetry assume the entire cold dark
matter arising only from weakly interacting neutralinos. We study a new class
of models consisting of U(1)n hidden sector extensions of the MSSM that
includes several stable particles, both fermionic and bosonic, which can be
interpreted as constituents of dark matter. In one such class of models, dark
matter is made up of both a Majorana dark matter particle, i.e., a neutralino,
and a Dirac fermion with the current relic density of dark matter as given by
WMAP being composed of the relic density of the two species. These models can
explain the PAMELA positron data and are consistent with the anti-proton flux
data, as well as the photon data from FERMI-LAT. Further, it is shown that such
models can also simultaneously produce spin independent cross sections which
can be probed in CDMS-II, XENON-100 and other ongoing dark matter experiments.
The implications of the models at the LHC and at the NLC are also briefly
discussed.Comment: Journal: Physical Review D, Latex 32 pages, 4 eps figure