15 research outputs found

    Long-term trends in diatom diversity and palaeoproductivity: a 16 000-year multidecadal record from Lake Baikal, southern Siberia

    Get PDF
    Biological diversity is inextricably linked to community stability and ecosystem functioning, but our understanding of these relationships in freshwater ecosystems is largely based on short-term observational, experimental, and modelling approaches. Using a multidecadal diatom record for the past ca. 16 000 years from Lake Baikal, we investigate how diversity and palaeoproductivity have responded to climate change during periods of both rapid climate fluctuation and relative climate stability. We show dynamic changes in diatom communities during the past 16 000 years, with decadal shifts in species dominance punctuating millennial-scale seasonal trends. We describe for the first time in Lake Baikal a gradual shift from spring to autumnal diatom communities that started during the Younger Dryas and peaked during the Late Holocene, which likely represents orbitally driven ecosystem responses to long-term changes in seasonality. Using a multivariate classification tree, we show that trends in planktonic and tychoplanktonic diatoms broadly reflect both long-term climatic changes associated with the demise of Northern Hemisphere ice sheets and abrupt climatic changes associated with, for example, the Younger Dryas stadial. Indeed, diatom communities are most different before and after the boundary between the Early and Middle Holocene periods of ca. 8.2 cal kyr BP, associated with the presence and demise of Northern Hemisphere ice sheets respectively. Diatom richness and diversity, estimated using Hill's species numbers, are also shown to be very responsive to periods characterized by abrupt climate change, and using knowledge of diatom autecologies in Lake Baikal, diversity trends are interpreted in terms of resource availability. Using diatom biovolume accumulation rates (BVARs; µm3 cm−2 yr−1), we show that spring diatom crops dominate palaeoproductivity for nearly all of our record, apart from a short period during the Late Holocene, when autumnal productivity dominated between 1.8–1.4 cal kyr BP. Palaeoproductivity was especially unstable during the Younger Dryas, reaching peak rates of 18.3 × 103 µm3 cm−2 yr−1 at ca. 12.3 cal kyr BP. Generalized additive models (GAMs), which explore productivity–diversity relationships (PDRs) during pre-defined climate periods, reveal complex relationships. The strongest statistical evidence for GAMs were found during the Younger Dryas, the Early Holocene, and the Late Holocene, i.e. periods of rapid climate change. We account for these differences in terms of climate-mediated resource availability, and the ability of endemic diatom species in Lake Baikal to adapt to extreme forms of living in this unique ecosystem. Our analyses offer insight into how productivity–diversity relationships may develop in the future under a warming climate

    Long-term trends in diatom diversity and palaeoproductivity: a 16000-year multidecadal record from Lake Baikal, southern Siberia

    Get PDF
    Biological diversity is inextricably linked to community stability and ecosystem functioning, but our understanding of these relationships in freshwater ecosystems is largely based on short-term observational, experimental, and modelling approaches. Using a multidecadal diatom record for the past ca. 16 000 years from Lake Baikal, we investigate how diversity and palaeoproductivity have responded to climate change during periods of both rapid climate fluctuation and relative climate stability. We show dynamic changes in diatom communities during the past 16 000 years, with decadal shifts in species dominance punctuating millennial-scale seasonal trends. We describe for the first time in Lake Baikal a gradual shift from spring to autumnal diatom communities that started during the Younger Dryas and peaked during the Late Holocene, which likely represents orbitally driven ecosystem responses to long-term changes in seasonality. Using a multivariate classification tree, we show that trends in planktonic and tychoplanktonic diatoms broadly reflect both long-term climatic changes associated with the demise of Northern Hemisphere ice sheets and abrupt climatic changes associated with, for example, the Younger Dryas stadial. Indeed, diatom communities are most different before and after the boundary between the Early and Middle Holocene periods of ca. 8.2 cal kyr BP, associated with the presence and demise of Northern Hemisphere ice sheets respectively. Diatom richness and diversity, estimated using Hill's species numbers, are also shown to be very responsive to periods characterized by abrupt climate change, and using knowledge of diatom autecologies in Lake Baikal, diversity trends are interpreted in terms of resource availability. Using diatom biovolume accumulation rates (BVARs; µm3 cm−2 yr−1), we show that spring diatom crops dominate palaeoproductivity for nearly all of our record, apart from a short period during the Late Holocene, when autumnal productivity dominated between 1.8–1.4 cal kyr BP. Palaeoproductivity was especially unstable during the Younger Dryas, reaching peak rates of 18.3 × 103 µm3 cm−2 yr−1 at ca. 12.3 cal kyr BP. Generalized additive models (GAMs), which explore productivity–diversity relationships (PDRs) during pre-defined climate periods, reveal complex relationships. The strongest statistical evidence for GAMs were found during the Younger Dryas, the Early Holocene, and the Late Holocene, i.e. periods of rapid climate change. We account for these differences in terms of climate-mediated resource availability, and the ability of endemic diatom species in Lake Baikal to adapt to extreme forms of living in this unique ecosystem. Our analyses offer insight into how productivity–diversity relationships may develop in the future under a warming climate

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    Upward shift in elevational plant species ranges in Sikkilsdalen, Central Norway

    Get PDF
    Phytosociological studies are an important tool to detect temporal vegetation changes in response to global climate change. In this study, we present the results of a resurvey of a plot-based phytosociological study from Sikkilsdalen, central Norway, originally executed between 1922 and 1932. By using a detailed phytosociological study we are able to investigate several aspects of elevational shifts in species ranges. Here we tested for upward and downward shifts in observed upper and lower distribution limits of species, as well as changes in species optima along an elevational gradient, and related the observed range shifts to species traits that could explain the observed trends. More species shifted upwards than downwards, independently of whether we were investigating shifts in species’ upper or lower distribution ranges or in species optima. However, shifts in species upper range margins changed independently of their lower range margins. Linking different species traits to the magnitude of shifts we found that species with a higher preference for prolonged snow cover shifted upwards more in their upper elevational limits and in their optima than species that prefer a shorter snow cover, whereas no species traits were correlated with the magnitude of changes in lower limits. The observed change in species ranges concord both with studies on other mountains in the region and with studies from other alpine areas. Furthermore, our study indicates that different factors are influencing species ranges at the upper and lower range limits. Increased precipitation rates and increased temperatures are considered the most important factors for the observed changes, probably mainly through altering the pattern in snow cover dynamics in the area

    Modern pollen - vegetation - plant diversity relationships across large environmental gradients in northern Greece

    No full text
    Past vegetation and biodiversity dynamics, reconstructed using palaeoecological methods, can contribute to assessing the magnitude of the current biodiversity crisis and anticipating future risks and challenges. Among the different palaeoecological techniques, pollen analysis is probably the most widely used to reconstruct vegetation and plant diversity changes through time. Such reconstructions demand robust and comprehensive calibration studies addressing the pollen representation of extant vegetation to be sound. However, calibration studies are rare in the Mediterranean biodiversity hotspot, particularly regarding plant diversity. Here, we contribute to filling this gap by investigating the modern pollen signature of Mediterranean vegetation across a large environmental gradient in northern Greece. At each sampling site (n = 61), we quantitatively compared the composition and diversity of plant (vegetation surveys) and pollen assemblages (moss/topsoil samples) using numerical techniques. Further, we compared these terrestrial pollen assemblages with those from lake sediment surface samples of the same region. We found an overall good match between plant and pollen assemblages, with maquis and mixed deciduous forest displaying particularly distinct pollen signatures. In contrast, the high regional importance of pines and oaks and their large pollen production blurred the pollen representation of other forested vegetation types and of shrublands and grasslands. Plant and pollen richness and their evenness showed similar declining trends with increasing altitude, but plant and pollen evenness bore a better match than richness. A more detailed vegetation-specific view on the data suggests that pine pollen seriously affected pollen richness and evenness in most of the pine-dominated stands. Lastly, our results suggest a rather straightforward application of vegetation-pollen relationships from moss/topsoil samples to interpret pollen assemblages from lakes in Mediterranean settings

    Long-term trends in diatom diversity and palaeoproductivity: A 16 000-year multidecadal record from Lake Baikal, southern Siberia

    No full text
    Biological diversity is inextricably linked to community stability and ecosystem functioning, but our understanding of these relationships in freshwater ecosystems is largely based on short-term observational, experimental, and modelling approaches. Using a multidecadal diatom record for the past ca. 16 000 years from Lake Baikal, we investigate how diversity and palaeoproductivity have responded to climate change during periods of both rapid climate fluctuation and relative climate stability. We show dynamic changes in diatom communities during the past 16 000 years, with decadal shifts in species dominance punctuating millennial-scale seasonal trends. We describe for the first time in Lake Baikal a gradual shift from spring to autumnal diatom communities that started during the Younger Dryas and peaked during the Late Holocene, which likely represents orbitally driven ecosystem responses to long-term changes in seasonality. Using a multivariate classification tree, we show that trends in planktonic and tychoplanktonic diatoms broadly reflect both long-term climatic changes associated with the demise of Northern Hemisphere ice sheets and abrupt climatic changes associated with, for example, the Younger Dryas stadial. Indeed, diatom communities are most different before and after the boundary between the Early and Middle Holocene periods of ca. 8.2 cal kyr BP, associated with the presence and demise of Northern Hemisphere ice sheets respectively. Diatom richness and diversity, estimated using Hill's species numbers, are also shown to be very responsive to periods characterized by abrupt climate change, and using knowledge of diatom autecologies in Lake Baikal, diversity trends are interpreted in terms of resource availability. Using diatom biovolume accumulation rates (BVARs; µm3 cm−2 yr−1), we show that spring diatom crops dominate palaeoproductivity for nearly all of our record, apart from a short period during the Late Holocene, when autumnal productivity dominated between 1.8–1.4 cal kyr BP. Palaeoproductivity was especially unstable during the Younger Dryas, reaching peak rates of 18.3 × 103 µm3 cm−2 yr−1 at ca. 12.3 cal kyr BP. Generalized additive models (GAMs), which explore productivity–diversity relationships (PDRs) during pre-defined climate periods, reveal complex relationships. The strongest statistical evidence for GAMs were found during the Younger Dryas, the Early Holocene, and the Late Holocene, i.e. periods of rapid climate change. We account for these differences in terms of climate-mediated resource availability, and the ability of endemic diatom species in Lake Baikal to adapt to extreme forms of living in this unique ecosystem. Our analyses offer insight into how productivity–diversity relationships may develop in the future under a warming climate

    Global acceleration in rates of vegetation change over the past 18,000 years

    No full text
    Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago

    Global acceleration in rates of vegetation change over the past 18,000 years

    Get PDF
    Global vegetation over the past 18,000 years has been transformed first by the climate changes that accompanied the last deglaciation and again by increasing human pressures; however, the magnitude and patterns of rates of vegetation change are poorly understood globally. Using a compilation of 1181 fossil pollen sequences and newly developed statistical methods, we detect a worldwide acceleration in the rates of vegetation compositional change beginning between 4.6 and 2.9 thousand years ago that is globally unprecedented over the past 18,000 years in both magnitude and extent. Late Holocene rates of change equal or exceed the deglacial rates for all continents, which suggests that the scale of human effects on terrestrial ecosystems exceeds even the climate-driven transformations of the last deglaciation. The acceleration of biodiversity change demonstrated in ecological datasets from the past century began millennia ago
    corecore