106 research outputs found

    Quality versus quantity of social ties in experimental cooperative networks

    Get PDF
    Recent studies suggest that allowing individuals to choose their partners can help to maintain cooperation in human social networks; this behaviour can supplement behavioural reciprocity, whereby humans are influenced to cooperate by peer pressure. However, it is unknown how the rate of forming and breaking social ties affects our capacity to cooperate. Here we use a series of online experiments involving 1,529 unique participants embedded in 90 experimental networks, to show that there is a ‘Goldilocks’ effect of network dynamism on cooperation. When the rate of change in social ties is too low, subjects choose to have many ties, even if they attach to defectors. When the rate is too high, cooperators cannot detach from defectors as much as defectors re-attach and, hence, subjects resort to behavioural reciprocity and switch their behaviour to defection. Optimal levels of cooperation are achieved at intermediate levels of change in social ties

    Soft x-ray measurements of z

    Get PDF
    This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10{sup 12} W/cm{sup 2} radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums

    Moment-closure approximations for discrete adaptive networks

    Get PDF
    Moment-closure approximations are an important tool in the analysis of the dynamics on both static and adaptive networks. Here, we provide a broad survey over different approximation schemes by applying each of them to the adaptive voter model. While already the simplest schemes provide reasonable qualitative results, even very complex and sophisticated approximations fail to capture the dynamics quantitatively. We then perform a detailed analysis that identifies the emergence of specific correlations as the reason for the failure of established approaches, before presenting a simple approximation scheme that works best in the parameter range where all other approaches fail. By combining a focused review of published results with new analysis and illustrations, we seek to build up an intuition regarding the situations when existing approaches work, when they fail, and how new approaches can be tailored to specific problems. © 2013 Elsevier B.V. All rights reserved

    High-temperature dynamic hohlraums on the pulsed power driver Z

    Get PDF
    In the concept of the dynamic hohlraum an imploding z-pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 LMA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diameters with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diameter. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 CV by stabilizing the pinch with a solid current return can. A current return can with 9 slots imprints 9 filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diameter capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diameter. Dynamic hohlraum shots including pellets are scheduled to take place on Z in September of 1998

    Functional and informatics analysis enables glycosyltransferase activity prediction

    Get PDF
    The elucidation and prediction of how changes in a protein result in altered activities and selectivities remain a major challenge in chemistry. Two hurdles have prevented accurate family-wide models: obtaining (i) diverse datasets and (ii) suitable parameter frameworks that encapsulate activities in large sets. Here, we show that a relatively small but broad activity dataset is sufficient to train algorithms for functional prediction over the entire glycosyltransferase superfamily 1 (GT1) of the plant Arabidopsis thaliana. Whereas sequence analysis alone failed for GT1 substrate utilization patterns, our chemical–bioinformatic model, GT-Predict, succeeded by coupling physicochemical features with isozyme-recognition patterns over the family. GT-Predict identified GT1 biocatalysts for novel substrates and enabled functional annotation of uncharacterized GT1s. Finally, analyses of GT-Predict decision pathways revealed structural modulators of substrate recognition, thus providing information on mechanisms. This multifaceted approach to enzyme prediction may guide the streamlined utilization (and design) of biocatalysts and the discovery of other family-wide protein functions

    Abgasmesstechnik fĂŒr die Zukunft

    No full text

    Abgasmeßtechnik fĂŒr die Zukunft

    No full text
    • 

    corecore