535 research outputs found

    Asymptomatic infection with highly pathogenic avian influenza H5N1 in wild birds: how sound is the evidence?

    Get PDF
    BACKGROUND: Widespread deaths of wild birds from which highly pathogenic avian influenza virus H5N1 has been isolated suggest that the virus continues to be lethal to them. However, asymptomatic carriage by some wild birds could allow birds to spread the virus on migration. Confirmation of such carriage is therefore important for the design of mitigation measures for the disease in poultry. DISCUSSION: Two recent papers have reported the isolation of H5N1 from a small number of water birds in China and Russia and have concluded that wild birds can spread the viruses over long distances on migration. However, both papers contain weaknesses in the provision of ornithological and associated data that compromise conclusions that can be reached about the role of wild birds in the spread of H5N1. We describe the weaknesses of these studies and highlight the need for improved methodological description and methodology, where appropriate, and further research. SUMMARY: A rigorous assessment of whether wild birds can carry H5N1 asymptomatically is critical to evaluating the risks of spread by migratory birds on long-distance migration

    Experimental inhibition of a key cellular antioxidant affects vocal communication

    Get PDF
    1. There is substantial interest of evolutionary ecologists in the proximate mechanisms that modulate vocal communication. In recent times, there has been growing interest in the role of oxidative stress as a mediator of avian song expression. 2. Here, we tested whether the experimental inhibition of the synthesis of a key cellular antioxidant (glutathione) reduces song rate metrics of male European starlings (Sturnus vulgaris). We measured the effect of our treatment on total song rate and on its two components, undirected and nest-box-oriented song, outside the breeding season. 3. Treated males that did not own a nest-box (subordinate males likely to be of lower quality) suffered increased oxidative stress relative to untreated males, while treated males that owned a nest-box (dominant males likely to be of higher quality) did not. Treated non-owners also reduced their undirected song rate, whereas treated nest-box owners did not suffer any reduction in song rate. 4. Our results revealed that inhibition of a key cellular antioxidant results in decreased vocal communication in a social vertebrate, and that this effect is dependent on its social status (nest-box owner vs. non-owner). 5. This work provides support for the hypothesis that acoustic signals may honestly convey information about the individual oxidative status and capacity to regulate the oxidative balance. Our findings raise the possibility of hitherto unexplored impacts of oxidative stress on fitness traits in social species

    Starling foraging success in relation to agricultural land-use

    Get PDF
    Changes in agricultural land-use have been suggested to contribute to the decline of several bird species through negative effects on their food supply during breeding. One important change in land-Use has been loss of pastures, especially permanent pastures. In this study we investigated how different forms of agricultural land-use affected foraging success or a declining bird species, the European starling Sturnus vulgaris. We let caged starlings forage in different forms of agricultural fields and determined time spent foraging and foraging success, The starlings' activity level (time spent actively foraging) as well as the number of prey caught per time unit was strongly related to the abundance of prey in soil samples. Also the body mass change during the experiment was positively related to activity level and prey capture rate, We found consistent differences in foraging variables between habitats. In spring sown grain starlings were least active and found fewer prey items at a lower rate than in any other habitat. The other three habitats differed less, but in general mowed hay fields appeared slightly more valuable than the cultivated and natural pastures. We did not find any differences between natural and cultivated pastures in foraging variables. Thus, starling foraging success is higher in grass-covered fields than in cultivated fields, but the management of the grass-covered fields mattered less. The results are consistent with starlings having higher population densities and breeding success in areas with higher availability of pasture. We suggest that the physical structure of the habitat (sward height) and Moisture may be additional variables that need to be taken into account to explain starling breeding density and success in the agricultural landscape

    Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis

    Full text link
    Considering a gas of self-propelled particles with binary interactions, we derive the hydrodynamic equations governing the density and velocity fields from the microscopic dynamics, in the framework of the associated Boltzmann equation. Explicit expressions for the transport coefficients are given, as a function of the microscopic parameters of the model. We show that the homogeneous state with zero hydrodynamic velocity is unstable above a critical density (which depends on the microscopic parameters), signaling the onset of a collective motion. Comparison with numerical simulations on a standard model of self-propelled particles shows that the phase diagram we obtain is robust, in the sense that it depends only slightly on the precise definition of the model. While the homogeneous flow is found to be stable far from the transition line, it becomes unstable with respect to finite-wavelength perturbations close to the transition, implying a non trivial spatio-temporal structure for the resulting flow. We find solitary wave solutions of the hydrodynamic equations, quite similar to the stripes reported in direct numerical simulations of self-propelled particles.Comment: 33 pages, 11 figures, submitted to J. Phys.

    New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion

    Full text link
    In this paper we present our detailed investigations on the nature of the phase transition in the scalar noise model (SNM) of collective motion. Our results confirm the original findings of Vicsek et al. [Phys. Rev. Lett. 75 (1995) 1226] that the disorder-order transition in the SNM is a continuous, second order phase transition for small particle velocities (v0.1v\leq 0.1). However, for large velocities (v0.3v\geq 0.3) we find a strong anisotropy in the particle diffusion in contrast with the isotropic diffusion for small velocities. The interplay between the anisotropic diffusion and the periodic boundary conditions leads to an artificial symmetry breaking of the solutions (directionally quantized density waves) and a consequent first order transition like behavior. Thus, it is not possible to draw any conclusion about the physical behavior in the large particle velocity regime of the SNM.Comment: 13 pages, 11 figure

    Spatio-temporal variation in European starling reproductive success at multiple small spatial scales

    Get PDF
    Funding Information This work received funding from the Natural Environment Research Council, Fair Isle Bird Observatory Trust and the Royal Society. Acknowledgments We thank Jessica Walkup, Jeroen Minderman, and many volunteers for help with data collection; Deryk and Hollie Shaw and Fair Isle Bird Observatory staff for help and support; Xavier Lambin and Justin Travis for comments on the manuscript and NERC (DB); and Fair Isle Bird Observatory Trust (DB) and the Royal Society (JMR) for funding.Peer reviewedPublisher PD
    corecore