10 research outputs found

    Effect of Different Levels of Phosphorus and Sulphur on Seed & Stover Yield of Soybean (Glycine max L. Merill) under 'Eutrochrepts'

    Get PDF
    A field experiment was conducted at KVK, Srinagar during two consecutive kharif seasons of 2010 and 2011 to study the “Effect of phosphorus and sulphur on yield and quality of soybean (Glycine max L. Merill) under Eutrochrepts”. The experiment was laid down under 16 treatment combinations viz four levels of phosphorus (0, 30, 60, 90 kg P2O5 ha-1) and four levels of sulphur (0,15, 30, 45 kg S ha-1) in randomized complete block design with three replications .The soil of the experimental site was typic Eutrochrepts, silty clay loam in texture having pH 7.18, EC 0.18 dSm-1, organic carbon 0.74 per cent, available N, P, K 250.52, 11.45, 120.62, kg ha-1, respectively. Soil was sufficient in available Fe, Cu, Mn and deficient in available Zn and sulphur. Total and organic phosphorus content in soil was 345 and 173 ppm, respectively while as total and organic sulphur content was 232 and 162 ppm, respectively. Both seed and stover yield of soybean increased significantly due to individual as well as combined application of phosphorus and sulphur. Combined application of 45 kg S with 90 kg P2O5 produced highest seed (24.39 q ha-1) and stover (43.51 q ha-1) yield of soybean. Application of increasing levels of both phosphorus and sulphur resulted in a significant increase in macro and micronutrient content of soybean seed. With application of 90 kg P2O5 ha-1, maximum nutrient content of N, P, K, Ca, Mg and S in seed was 6.42, 0.56, 1.876, 0.324 0.440, 0.466 per cent, respectively while as Fe, Cu, Mn was 100.01, 2.86 and 3.74 mg kg-1, respectively

    Role of perceived ease of use, usefulness, and financial strength on the adoption of health information systems:the moderating role of hospital size

    Get PDF
    Adoption of a health information system is always a challenge for hospitals. It is because most of the medical staff do not have enough skills to use the new technology and due to the sensitivity of medical data. These factors pose a challenge for the successful adoption of health information system in hospitals. The aim of this research is to find out the factors which influence the adoption of information systems in hospitals. The study investigated the impact of the Financial status of the Hospital; Perceived Usefulness and Perceived Ease of Use on the adoption of health information systems through a questionnaire survey. Data was collected from 602 healthcare workers from 20 hospitals through close-ended questionnaire in Pakistan, where the adoption of health information systems is very slow. PLS-SEM was used for the analysis. The findings show that the Financial status of the Hospital; Perceived Usefulness and Perceived Ease of Use have positive and significant role in the adoption of Health Information Systems. The finding also shows that hospital size moderates the relationship of Perceived ease of use and the adoption of health information systems and interestingly it does not moderate the relationship among perceived usefulness and financial strength toward the adoption of health information systems. The study concludes that perceived ease of use, perceived usefulness and financial strength are the main factors, necessary for the adoption of health information systems. The findings of the study have useful implications for policy makers, medical professionals to successfully adopt health information systems in hospitals. It also provides new avenues for researchers to explore other factors and test this framework in other countries.</p

    Role of perceived ease of use, usefulness, and financial strength on the adoption of health information systems:the moderating role of hospital size

    Get PDF
    Adoption of a health information system is always a challenge for hospitals. It is because most of the medical staff do not have enough skills to use the new technology and due to the sensitivity of medical data. These factors pose a challenge for the successful adoption of health information system in hospitals. The aim of this research is to find out the factors which influence the adoption of information systems in hospitals. The study investigated the impact of the Financial status of the Hospital; Perceived Usefulness and Perceived Ease of Use on the adoption of health information systems through a questionnaire survey. Data was collected from 602 healthcare workers from 20 hospitals through close-ended questionnaire in Pakistan, where the adoption of health information systems is very slow. PLS-SEM was used for the analysis. The findings show that the Financial status of the Hospital; Perceived Usefulness and Perceived Ease of Use have positive and significant role in the adoption of Health Information Systems. The finding also shows that hospital size moderates the relationship of Perceived ease of use and the adoption of health information systems and interestingly it does not moderate the relationship among perceived usefulness and financial strength toward the adoption of health information systems. The study concludes that perceived ease of use, perceived usefulness and financial strength are the main factors, necessary for the adoption of health information systems. The findings of the study have useful implications for policy makers, medical professionals to successfully adopt health information systems in hospitals. It also provides new avenues for researchers to explore other factors and test this framework in other countries.</p

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Evaluation of CERES Maize model under Indian Temperate Conditions

    No full text
    Field experiments were conducted in India at Shalimar Campus of Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir during 2015 and 2016 to study the growth and yield of maize at different planting dates and nitrogen levels. Maize was simulated at different agro-ecological zones (altitudes) of Kashmir valley. Further, maize was evaluated at fixed dates with varied nitrogen levels and at fixed nitrogen level with varied dates of sowing. Experiment was laid in split plot design with three dates of sowing, i.e. 22nd May, 30th May and 8th June, assigned to main plot and four levels of nitrogen, i.e. 80 kg N ha-1 (N1), 120 kg N ha-1(N2), 160 kg N ha-1 (N3) and 200 kg N ha-1, assigned to sub plot. Genetic coefficients of maize crop variety (Shalimar Maize composite-4) were generated, calibrated and validated in CERES Maize model using DSSAT 4.5. Simulated studies carried atdifferent locations indicated that sowing of Maize on 30th May (D2) with 200 kg N ha-1 (N4) predicted highest grain yield in location Kokernag which was followed by location Srinagar on same date 30th May (D2) with 160 kg N ha-1(N3) and lowest yield was recorded in district Kupwara. Maximum Biological yield was also recorded at 30th May with 160 kg N ha-1 (N3). Among the district Kokernag recorded maximum biological yield with delayed maturity (160 days) simulation studies were carried out with 7 dates of sowing at fixed level of Nitrogen in all the districts. Simulated studies of maize showed that sowing on 30th May with 160 kg N ha-1 (N3) recorded maximumLeaf Area Index Biological yield and grain yield. However, highest grain yield was recorded at location Kokernag and lowest was recorded at location Kupwara

    Soil Water and Nitrogen Balance Study of Maize Using CERES Maize Model in DSSAT

    No full text
    Simulated studies indicated that early sowing i.e 15th April (D1) predicted highest grain yield during all the years from 1986-2013. Under irrigated conditions increasing levels of N predicted increased grain and stover yield from N levels up to 90 kg N ha-1. Under irrigated and mulched conditions increased level of N predicted increase in maize grain and stover yield upto 120 kg N ha-1. Whereas under un-irrigated mulched conditions highest grain and stover yield was predicted at 60 kg N ha-1. Maize yield was also simulated at different sowing dates and in combination with variable spacings and it was predicted that under irrigated condition closer spacing 40 cm × 20 cm at 15th April sowing recorded highest grain and stover yield of maize. Under un-irrigated mulched conditions highest grain yield was predicted at 30th April sowing with spacing 65 cm × 20 cm. Soil water balance under simulation studies indicated that potential ET was recorded comparatively higher with early sowing date than late sowing date under both irrigated un-irrigated mulched conditions. Similar trend was recorded with respect to transpiration under both irrigated and un-irrigated mulched conditions. Simulated soil evaporation was more in wider spacing than closer spacing. Similar trend was recorded with regard to simulated run-off. Predicted nitrate content (final) of irrigated soil decreased where under un-irrigated mulched conditions 15th April (D1) sowing predicted lowest NO3 leaching than later sowing dates. Under un-irrigated mulched conditions leached nitrate was nominal. Nitrogen denitrification was comparatively more under un-irrigated mulched conditions than irrigated condition. It is concluded that DSSAT v 4.5CERES-Maize model is very robust in predicting the growth and yield of maize as influenced by agrotechniques and could be used in wider perspective

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore