535 research outputs found

    Imperieopløsning i frøperspektiv

    Get PDF

    Trophic rewilding presents regionally specific opportunities for mitigating climate change

    Get PDF
    Large-bodied mammalian herbivores can influence processes that exacerbate or mitigate climate change. Herbivore impacts are, in turn, influenced by predators that place top-down forcing on prey species within a given body size range. Here, we explore how the functional composition of terrestrial large herbivore and carnivore guilds vary between three mammal distribution scenarios: Present-Natural, Current-Day, and Extant-Native Trophic (ENT) Rewilding. Considering the effects of herbivore species weakly influenced by top-down forcing, we quantify the relative influence keystone large herbivore guilds have on methane emissions, woody vegetation expansion, fire dynamics, large-seed dispersal, and nitrogen and phosphorous transport potential. We find strong regional differences in the number of herbivores under weak top-down regulation between our three scenarios with important implications for how they will influence climate change relevant processes. Under the Present-Natural non-ruminant, megaherbivore, browsers were a particularly important guild across much of the world. Megaherbivore extinction and range contraction and the arrival of livestock means large, ruminant, grazers have become more dominant. ENT Rewilding can restore the Afrotropics and Indo-Malay to the Present-Natural benchmark, but causes top-down forcing of the largest herbivores to become common place elsewhere. ENT Rewilding will reduce methane emissions, but does not maximise Natural Climate Solution potential

    Individual fitness is decoupled from coarse‐scale probability of occurrence in North American trees

    Get PDF
    Habitat suitability estimated with probability of occurrence in species distribution models (SDMs) is used in conservation to identify geographic areas that are most likely to harbor individuals of interest. In theory, probability of occurrence is coupled with individual fitness so that individuals have higher fitness at the centre of their species environmental niche than at the edges, which we here define as 'fitness‐centre' hypothesis. However, such relationship is uncertain and has been rarely tested across multiple species. Here, we quantified the relationship between coarse‐scale probability of occurrence projected with SDMs and individual fitness in 66 tree species native of North America. We used 1) field data of individuals' growth rate (height and diameter standardized by age) available from the United States Forest Inventory Analysis plots; and 2) common garden data collected from 23 studies reporting individual growth rate, survival, height and diameter of individuals originated from different provenances in United States and Canada. We show 'fitness–centre' relationships are rare, with only 12% and 11% of cases showing a significant positive correlation for field and common garden data, respectively. Furthermore, we found the 'fitness–centre' relationship is not affected by the precision of the SDMs and it does not depend upon dispersal ability and climatic breath of the species. Thus, although the 'fitness–centre' relationship is supported by theory, it does not hold true in nearly any species. Because individual fitness plays a relevant role in buffering local extinction and range contraction following climatic changes and biotic invasions, our results encourage conservationists not to assume the 'fitness–centre' relationship when modelling species distribution

    Allieret med forbehold eller forbeholden allieret?

    Get PDF
    Intet resum

    Tjetjenien: Hvordan islamismen trængte frem

    Get PDF
    Intet resum
    corecore