

Shifting baseline in macroecology? Unraveling the influence of human impact on mammalian body mass

Article

Accepted Version

Santini, L., González-Suárez, M., Rondinini, C. and Di Marco, M. (2017) Shifting baseline in macroecology? Unraveling the influence of human impact on mammalian body mass. Diversity and Distributions, 23 (6). pp. 640-649. ISSN 1472-4642 doi: https://doi.org/10.1111/ddi.12555 Available at http://centaur.reading.ac.uk/69201/

It is advisable to refer to the publisher's version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1111/ddi.12555

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

1	Article type: Original article
2	Title: Shifting baseline in macroecology? Unraveling the influence of human impact
3	on mammalian body mass
4 5	Running head: Human impact on mammalian body mass patterns
6	Luca Santini ^{1,2*} , Manuela González-Suárez ^{3,4} , Carlo Rondinini ² , Moreno Di Marco ^{5,6}
7	
8	¹ Department of Environmental Science, Radboud University, P.O. Box 9010, NL-
9	6500 GL, Nijmegen, The Netherlands
10	² Global Mammal Assessment program, Department of Biology and Biotechnologies,
11	Sapienza Università di Roma, Viale dell'Università 32, 00185 Rome, Italy
12	³ Department of Conservation Biology, Estación Biológica de Doñana - CSIC, 41092
13	Seville, Spain.
14	⁴ Ecology and Evolutionary Biology, School of Biological Sciences, University of
15	Reading, Whiteknights, Reading, Berkshire, RG6 6AS, UK
16	⁵ ARC Centre of Excellence for Environmental Decision, Centre for Biodiversity and
17	Conservation Science, The University of Queensland, St Lucia, QLD 4072 (Brisbane,
18	Australia).
19	⁶ School of Earth and Environmental Sciences, The University of Queensland, St
20	Lucia, QLD 4072 (Brisbane, Australia).
21	
22	Corresponding author: Luca Santini, luca.santini.eco@gmail.com
1 1	

24 Abstract

25 Aim Human activities have led to hundreds of species extinctions and have narrowed 26 the distribution of many of the remaining species. These changes influence our 27 understanding of global macroecological patterns, but their effects have been rarely 28 explored. One of these patterns, the Bergmann's rule, has been largely investigated in 29 macroecology, but often under the assumption that observed patterns reflect "natural" 30 processes. We assessed the extent to which humans have re-shaped the observable 31 patterns of body mass distribution in terrestrial mammals, and how this has altered the 32 macroecological baseline.

33 **Location** Global

Methods Using a comprehensive set of ecological, climatic, and anthropogenic variables we tested several alternative hypotheses to explain the body mass pattern observed in terrestrial mammals assemblages at a 1-degree resolution. We then explored how model predictions and the Bergmann's latitudinal pattern are affected by the inclusion of human impact variables, and identified areas where predicted body mass differs from the expected due to human impact.

40 Results Our model suggests that median and maximum body mass predicted in grid
41 cells would be higher, and skewness in local mass distributions reduced, if human
42 impacts were minimal, especially in areas that are highly accessible to humans and
43 where natural land cover has been converted for human activities.

44 Main conclusions Our study provides evidence of the pervasive effects of

45 anthropogenic impact on nature, and shows human-induced distortion of global

46 macroecological patterns. This extends the notion of "shifting baseline", suggesting

47 that when the first macroecological investigations started, our understanding of global

48 geographic patterns was based on a situation which was already compromised. While

49	in the short term human impact is causing species decline and extinction, in the long
50	term it is causing a broad re-shaping of animal communities with yet unpredicted
51	ecological implications.
52	
53	Keywords: Accessibility, Bergmann's rule, Defaunation, Extinction, Human impact,
54	Land use change, Terrestrial mammals, Vulnerability

56 1. Introduction

57 The current human impact on nature is pervasive, and land-use change has

58 considerably reshaped the Earth's surface and disrupted natural dynamics (Newbold

59 et al., 2016). Hundreds of vertebrate species have become extinct in the last centuries,

60 and many of the remaining species have shown declines in abundance and

61 contractions in distribution (Dirzo et al., 2014). The extent of these changes has led to

an alteration of natural macroecological patterns (Murray & Dickman, 2000; Diniz-

63 Filho et al., 2009; Di Marco & Santini, 2015a; Faurby & Svenning, 2015; Torres-

64 Romero & Olalla-Tárraga, 2015), to the point that current patterns may have become

a poor reflection of the original biogeographical drivers (Di Marco & Santini, 2015a;

but see Olalla-Tárraga et al., 2015; Di Marco & Santini, 2015b).

67 Since Bergmann's prediction that animal body mass increased with latitude 68 (Bergmann, 1847), the intra- and interspecific spatial distribution of body mass has 69 been one of the most investigated global macroecological patterns (Blackburn et al., 70 1999; Meiri, 2011). However, after more than 160 years, the so-called Bergmann's 71 rule is still under debate (Blackburn et al., 1999; Meiri, 2011) with a number of 72 alternative explanations proposed. The original explanation by Bergmann has taken 73 the name of "heat conservation hypothesis" and predicts that organisms in colder 74 areas tend to be larger because the reduction in their surface/volume ratio that results 75 from increased size limits heat dissipation (Bergmann, 1847). Size may also affect the 76 evaporative cooling rate in moist and warm climate, favouring small-bodied species 77 (the "heat dissipation hypothesis"; Brown & Lee, 1969; James, 1970; Speakman & 78 Król, 2010). A larger body mass can reduce the risk of starvation as proposed by the 79 "starvation resistance hypothesis", allowing a species to cope with the seasonal 80 shortage of resources that occur in higher latitudes (Calder, 1984; Lindstedt & Boyce,

1985; Dunbrack & Ramsay, 1993). Larger species also disperse longer distances, 81 82 which could have influenced their ability to re-colonize high latitudes after the 83 Pleistocene ice-sheet retreat, as proposed in the "dispersal hypothesis" (Blackburn & 84 Hawkins, 2004). Finally, the "resource-rule" suggests that the pattern may arise from 85 the latitudinal pattern of resources availability reflecting gradients of climate and 86 biological competition (McNab, 2010). No hypothesis alone is able to explain the 87 observed patterns for all taxa, and several non-exclusive explanations have found 88 empirical support (Rodríguez et al., 2006; Rodriguez et al., 2008; Diniz-Filho et al., 89 2009; Olson et al., 2009). Interestingly, all proposed mechanisms assume that 90 observable patterns are determined by "natural" environmental conditions, largely 91 disregarding past and present human impacts.

92 Investigation of the distribution of mammalian body mass and how humans 93 have changed observable patterns is of direct relevance for conservation assessments. 94 Species vulnerability to extinction is generally positively correlated with body mass. 95 Large species are at much higher risk than small ones (Purvis et al., 2000; Cardillo et 96 al., 2005; Di Marco et al., 2014a) and have a higher probability of facing an increase 97 in risk over time (Di Marco et al., 2015). This is because large species tend to live at 98 low densities (Damuth, 1981) and have slow rates of population growth as compared 99 to small species (Fenchel, 1974; Johnson, 2002). In addition, large-bodied mammals 100 have been largely persecuted by humans for meat (Milner-Gulland & Bennet, 2003; 101 Corlett, 2007), to reduce conflicts with human activities (Woodroffe, 2000), or for 102 trophy hunting (Allendorf & Hard, 2009). Scattered evidence suggests that the spatial 103 patterns in body mass that we observe today have been influenced by past human 104 impact, including human-induced megafauna extinctions in the Pleistocene (Smith & 105 Lyons, 2011; Morales-Castilla et al., 2012), and large fauna extinctions from

106 agricultural development in historical times (Fritz et al., 2009). More recent 107 extinctions, as well as contractions of species' geographic ranges (Diniz-Filho et al., 108 2009; Di Marco & Santini, 2015a; Faurby & Svenning, 2015) may have also played a 109 central role in re-shaping global species assemblages (Ripple & Van Valkenburgh, 110 2010). Indeed, there are only a few areas worldwide left where the megafauna can be 111 considered intact (Morrison et al., 2007; Faurby & Svenning, 2015). It has also been 112 argued that the skewness of the distribution of mammal body mass in the Holocene 113 has been exacerbated due to the extinction large species in the Pleistocene (Lyons et 114 al., 2004; Smith & Lyons, 2011). Simulations have also suggested that the non-115 random extinction of large-bodied species has likely contributed to the observed 116 skewness in body mass distribution (Maurer et al., 1992). Characterizing human 117 impacts on body size distributions can help us identifying altered mammalian 118 assemblages and more pristine and potentially sensitive communities. 119 Here we investigate how ecological, climatic, and anthropogenic variables 120 predict the current distribution of body mass in mammal species assemblages using a 121 1-degree grid covering the world's land surface. We then predict how body mass 122 values would change if the effects of human impact were minimal and whether the 123 relationship between latitude and body mass (Bergmann's rule) has been distorted by 124 human impact as has previously been argued (Faurby & Araújo, 2016). We 125 hypothesize that mammal species assemblages have overall reduced body size in 126 proportion to the intensity and duration of human impacts. We also hypothesize that 127 the skewness in body mass distribution has been increased by the loss of large 128 species. Furthermore, because human impacts are not homogenously distributed 129 across the planet, we expect a weaker relationship between latitude and body mass in 130 the Northern hemisphere, where impacts are predominant.

132 **2. Methods**

133 <u>2.1. Spatial grid of body mass distribution</u>

134 We analysed data for 5,242 terrestrial mammal species for which distribution and 135 body mass information were available (~98% of all terrestrial mammals). We used the 136 geographic range polygons published by the Red List of the International Union for 137 Conservation of Nature to represent species distributions (IUCN, 2015), and obtained 138 body mass data from Pacifici et al. (2013) which is largely based on the PanTHERIA 139 dataset (Jones et al., 2009). We analysed the geographical pattern of body mass at the 140 assemblage level (Olalla-Tárraga et al., 2010), and used a 1-degree resolution grid (in 141 lat-long) covering the world's lands whereby species were assigned to cells which 142 were entirely or partly overlapping with their ranges. Assemblage level approaches 143 are ideal to investigate the geographical pattern of the Bergmann' rule because they 144 allow to directly assess the underlying environmental structure. With alternative 145 cross-species approaches this structure would be severely limited because 146 environmental gradients are reduced to a single point in the geographical space 147 (Olalla-Tárraga et al., 2010). For each grid cell, we then calculated the median, 148 maximum and skewness of untransformed body mass values (Fig. 1; Meiri & 149 Thomas, 2007). We excluded from analyses cells with \leq 5 species. The maximum was expressed as the 90th percentile of the statistical distribution of body mass values in 150 151 order to avoid capturing outliers (Blackburn & Hawkins, 2004), and it was only 152 calculated for cells with >10 species.

153

154 <u>2.2. Environmental and human impact variables</u>

155 We considered 12 potential environmental predictors of species body mass following 156 previous macroecological research on body mass distribution in endotherms. We 157 represented climatic conditions considering: mean annual temperature, mean 158 temperature of the coldest quarter, mean temperature of the warmest quarter, mean 159 annual precipitation, mean precipitation of the driest quarter, mean precipitation of the 160 wettest quarter, and actual evapotranspiration (AET). Temperature is directly linked 161 with the heat conservation hypothesis, whereas precipitation and AET are linked to 162 the heat dissipation hypothesis (Blackburn & Hawkins, 2004; Rodríguez et al., 2006; 163 Rodriguez et al., 2008; Diniz-Filho et al., 2009; Olson et al., 2009). Temperature and 164 precipitation variables were downloaded from WorldClim (Hijmans et al., 2005) for 165 the period 1950-2000. AET and PET were downloaded from 166 http://www.grid.unep.ch/data/summary.php?dataid=GNV183 for the period 1920-167 1980. Additionally as a measure of mesoscale climatic variation and environmental 168 heterogeneity within cells (Blackburn & Hawkins, 2004; Rodríguez et al., 2006; 169 Rodriguez et al., 2008; Diniz-Filho et al., 2009; Olson et al., 2009) we used the range 170 in elevation calculated from the global relief model ETOPO1 (Amante & Eakins, 171 2009). We represented primary productivity using the Normalized Difference of 172 Vegetation Index (NDVI; 173 http://neo.sci.gsfc.nasa.gov/view.php?datasetId=MOD13A2 M NDVI). We used 174 monthly estimates from 2000 to 2012 to calculate annual mean productivity and the 175 coefficient of variation in NDVI within year as a proxy of seasonality in primary 176 productivity (Blackburn & Hawkins, 2004; Rodríguez et al., 2006; Rodríguez et al., 177 2008; Diniz-Filho et al., 2009; Olson et al., 2009). The periods represented by these 178 variables differ because data were not available for the same periods. To account for

179 historical processes that could influence body mass distribution we estimated "time

180 since last glacial retreat" following Rodríguez et al. (2006). Finally, body mass values 181 in an area might be influenced by species richness (Meiri & Thomas, 2007; Olson et 182 al., 2009), hence we controlled for this potential influence by including taxonomic 183 Order richness as a predictor. We used Order richness because it is more robust to 184 recent local extinctions than species richness, and thus more adequate when making 185 predictions that assumed no human impacts (see below). We acknowledge that this 186 approach has potential limitations for smaller orders, characterised by few large-187 bodied species (e.g. Proboscidata, Perissodactyla), yet, for most groups that include 188 many of the largest mammals (e.g., Carnivora and Cetartiodactyla) it would be more 189 robust.

190 We additionally considered four variables representing levels of human impact 191 on natural environments: human population density (ind/ha) in the year 2000 (CIESIN 192 & CIAT, 2005); percentage of agricultural land calculated from Globcover satellite 193 images at year 2009 (IONIA, 2009); accessibility, expressed as travel time (hours) 194 from major cities (>50,000 people; Nelson, 2008); and history of land use, expressed 195 as time from first human use, spanning from 0 (never used) to 8000 (first used in 6000 196 bc), derived from the KK10 model of historical land use intensity (Ellis et al., 2013). 197 Following Ellis et al. (2013) we considered a cell as significantly used when the 198 percentage of land classified as human use was >20%. 199

200 <u>2.3. Statistical analyses</u>

201 To avoid potential collinearity issues (see Table S1 in Supporting Information) in

202 model fitting and to reduce model complexity, we performed a principal component

analysis (PCA). Prior to perform the PCA, mean annual precipitation, mean

204 precipitation of the wettest quarter, mean precipitation of the driest quarter, AET,

range in elevation, order richness and NDVI seasonality were log10-transformed to
reduce distribution skewness, and all variables were standardized to a mean of zero
and a SD of one. To determine the number of components to retain we tested axes
significance based on the broken-stick criterion (Legendre & Legendre, 1998). We
selected the first two components that were significant and together explained 64.3%
of the variance (Table S2-S3).

211 We then fitted and compared alternative models to predict either the median or 212 maximum body mass values (log10-transformed to meet model assumptions) in each 213 grid cell (Table 1). The null model included only the selected principal components 214 reflecting environmental characteristics. Additional models were built by adding 215 combinations of one or two human impact variables (Table 1). Some combinations of 216 impact variables were not tested because of high correlation among variables (Pearson 217 r \geq 0.7). All human impact variables were also log10-transformed to meet linearity 218 assumptions in our models. Because large bodied species need large areas to form 219 viable populations, body mass is also constrained by island size. In order to account 220 for area constraints in body mass all models were also run including the factor 221 "islands" to allow the intercept to adjust at different values. Islands were defined as all land masses smaller than an area threshold. We defined 4 thresholds: 25,000 km² 222 (102 cells), 100,000 km² (231 cells), 500,000 km² (386 cells), and 7,500,000 km² (724 223 224 cells; ~ all lands smaller than Australia).

Each model was first fitted using ordinary least square regression (OLS) and we tested for spatial autocorrelation in the residuals using Moran Index. Because models' residuals were always significantly autocorrelated (Table S4), we used spatial auto-regressive linear models (SAR) with a rook neighbourhood to compare proposed models and estimate coefficients. We used the function "errorsarlm" from the package

230	"spdep" in R 3.0.3 (R Core Team, 2016). This spatial error model assumes that the
231	autoregressive process is found only in the error term, and it has been found to
232	perform better than OLS and other SAR models (Kissling & Carl, 2008). This
233	approach removed most of the spatial autocorrelation in the residuals (Fig. S1).
234	Models were compared using Bayesian Information Criterion (BIC) weights
235	(ω), indicating the relative weight of evidence of competitive models (Burnham &
236	Anderson, 2002). We used BIC rather than the more commonly used Akaike
237	Information Criterion (AIC) because it is more conservative in estimating differences
238	between competitive models when sample size is high (n>15,000 in this study) and
239	tends to select for simpler, more parsimonious models (Raffalovich et al., 2008).
240	However, for comparison, we also report the results of model selection based on AIC
241	in supporting material (Table S7). Following Burnham and Anderson (2002) we
242	calculated predicted values based on a single model if clearly identified as best (ω >
243	0.9) or using weighted estimates obtained by averaging predictions of all models
244	weighted by ω . We calculated the variance explained by the models as pseudo-R ² , by
245	taking the square of the correlation coefficient between the fitted values and the
246	observed variable (R^{2}_{sp}), and the square of the correlation coefficient between the
247	predicted values using the coefficients only (not the spatial part) and the observed
248	variable (R^{2}_{nsp}). While the former indicate the variance explained by the fixed factor
249	and the spatial autocorrelation combined, the latter indicate the variance explained by
250	the fixed factors only. The model selection procedure described above was replicated
251	using skewness in body mass as the response variable. Mammalian body mass
252	distribution has been shown to be both phylogenetically and spatially autocorrelated
253	at a global scale (Villalobos et al., 2016). However, phylogenetic relatedness in

assemblage-level analyses is a substantially smaller problem than in cross-species

255 analyses, and the method proposed to control for both spatial and phylogenetic

256

autocorrelation in assemblage-level analyses (eigenvector regression) (Diniz-Filho et

257 al., 1998, 2009) has been criticized (Adams & Church, 2011; Freckleton et al., 2011).

258 Using the SAR models, we then predicted mean and maximum body mass per 259 grid under two scenarios of anthropogenic impact: observed impact and minimal 260 impact. The first scenario corresponded to the fitted values from the best model (or a 261 ω -weighted average prediction from all models if no single model was clearly 262 supported). For the second scenario, we simulated minimal human impacts by 263 assigning to each grid cell the lowest observed value of each human impact variable 264 in the model, while retaining the environmental variable values, and recalculating its 265 predicted mean and maximum body mass (as above by weighted average if no single 266 model was clearly supported). To estimate the expected loss in median and maximum 267 body mass, we then calculated the difference (delta) between the predictions under the 268 two scenarios of human impact.

269 To assess whether Bergmann's rule is affected by human impact, we explored 270 the relationship between latitude and predicted body mass for each scenario. To avoid 271 longitudinal autocorrelation in these analyses, we treated longitudinal bands as 272 random effects (1 degree of longitude) and then modelled these mass values as a 273 function of latitude allowing for separate intercept and slope estimates for each 274 scenario. We used the function "Ime" from the package "nIme". Because the observed 275 relationship between latitude and body mass is non-linear with an inflection around 276 20°N, we actually fitted three linear regression models: above 20° of latitude in the 277 northern hemisphere, between 0° and 20°N, and southern hemisphere. All spatial 278 analyses were performed using the package "raster" (Hijmans et al., 2005) and 279 "maptools" (Lewin-Koh & Bivand, 2011) in R 3.0.3 (R Core Team, 2016).

281 <u>2.4. Comparison with historical data</u>

282	As a mean of cross-validation, we compared the results obtained with our approach
283	based only on contemporary data with calculated differences in current vs. historical
284	body mass distributions (Faurby & Araújo, 2016). We calculated historical mean and
285	maximum body mass per cell using the historical ranges available from Faurby &
286	Svenning (2015) following the same procedure described above for the current ranges
287	(Fig. S2). Because our approach is likely to only capture relatively recent
288	anthropogenic effects, we only retained species recognized by the IUCN in the
289	historical dataset, which correspond to those persisting at least until 1,500 AD. Body
290	mass estimates for extinct species were primarily obtained from Smith et al. (2003),
291	and supplemented with data from publications on specific species (MacPhee &
292	Grimaldi, 1996; Goodman et al., 2004; van Vuure, 2005; Faurby & Svenning, 2016).
293	For extinct species for which no estimate was available we used the mean body mass
294	from its congeners. We calculated the agreement between both estimates simplifying
295	the change in body mass between current and historical species distribution to a
296	binary response (predicted decrease in mass=1, no decrease or increase=0). This
297	simplification allows measuring the agreement of the two models in terms of areas
298	where large-bodied species have been lost, rather than an agreement in the exact
299	values that was not expected a priori given the differences in the methodologies and
300	in the group of species considered. To quantify the overall agreement we estimated
301	the Area Under the Curve (AUC) of a Receiving Operating Characteristics curve that
302	assesses the performance of a binary classifier comparing the true and false positive
303	rates. We used historical changes as observed and changes predicted by our model as
304	expected.

306	3. Results
307	3.1. Influence of anthropogenic impact on body mass distribution
308	The best models for median and maximum body mass (Table 1, Table S5) included
309	one or two of the human impact variables considered. Travel time from major cities (a
310	proxy of accessibility to humans) showed a positive relationship with median and
311	maximum body mass, indicating that larger species tend to inhabit more inaccessible
312	areas (Table 2; Table S6). Similarly, median body mass decreased with increasing
313	time from first land use, indicating that larger mammals are found in more pristine
314	areas. Maximum body mass was lower in islands than in mainland.
315	We found similar results for skewness in body mass distribution. For this variable no
316	model was unequivocally supported (ω >0.9). The three most supported models
317	(ω >0.1) included accessibility, percentage of agricultural area, time from first land
318	use, and the factor island (Table 1; Table S5). Skewness increased with increasing
319	percentage of agricultural areas and time from first land use, and decreased with
320	increasing travel time from major cities. In islands skewness was lower (Table 1;
321	Table S6). Qualitatively similar results were found using AIC for model selection
322	(Table S7).
323	

324 <u>3.2. Alteration of body mass distribution pattern</u>

325 The relationship between latitude and median body mass (Bergmann's rule) is

326 negative in the northern hemisphere above 20°N and in the southern hemisphere, but

- 327 positive between 0° and 20° N. Conversely, the relationship between latitude with
- 328 maximum body mass was positive with latitude above 20°N and slightly positive in
- 329 the southern hemisphere, and slightly negative between 0° and 20° N. The slopes

decreased in the northern hemisphere above 20° with human impact for median and
maximum body mass, increased between 0° and 20°, and decreased for the Southern
hemisphere for both median and maximum body mass (Table 2; Fig. 2).

Comparing the best model predictions under the two scenarios, we estimated

that under the minimal human impacts scenario we would expect an increase of 123.9

 \pm 37.4 g (mean \pm SD) in median body mass and of 9.9 \pm 2.4 kg in maximum body

mass, corresponding to a relative increase of 22.4 ± 5.7 % and 25.6 ± 6.2 %

respectively (Fig. 3). For mainlands, median and maximum body mass loss were

338 particularly noticeable in United States, Southeastern Brazil, Europe, Sub-Saharan

Africa, Central and South East Asia, and Southern east and west Australia. In general

340 islands showed lower absolute losses, but similar relative values (Fig. 3).

341

342 <u>3.3. Comparison with historical dataset</u>

343 Our results were generally consistent with estimates based on current and historical

344 data, although historical data suggested larger changes than our predictions in general,

but negative changes in the Amazon basin and Australia (Fig. S3). We calculated

AUC values of 0.51 and 0.71 for the mean and maximum body mass respectively

indicating no and moderate agreement in change tendency.

348

349 **4. Discussion**

350 <u>4.1. Alteration of body mass distribution pattern</u>

351 Our results indicate that the present values of mammalian body mass are lower than

those expected under "natural" environmental conditions alone. Current body mass

distribution in terrestrial mammal assemblages appeared largely influenced by

associated with existing human impacts. In particular, high body mass values were associated with

355 remote areas (those requiring longer travel times from major cities), lower human 356 population density and with no or recent land conversion. Human population density 357 and accessibility can be considered proxies of many human disturbance factors 358 including over-exploitation from hunting and persecution (Nelson, 2008). Conversion 359 to agriculture has direct effects on local extinctions, by replacing natural habitat with 360 lands unsuitable to most species. Our analyses showed that both current and past 361 conversion can be relevant. Importantly, models including descriptors of human 362 impacts were more supported than the null models based only on "natural" conditions, 363 indicating that anthropogenic effects must be considered when trying to understand 364 current macroecological patterns.

365 Our results showed that the relationship between latitude and body mass, 366 (Bergmann's rule) has been altered during the "Anthropocene". We observed a 367 vertical shift in the relationship due to a widespread reduction in median and 368 maximum body mass. Noticeably, the shape of the relationship did not conform well 369 to the expectations derived from the Bergmann's rule, and the slopes were altered by 370 human impact at the three different latitudinal belts (>20° of latitude in the northern 371 hemisphere, between 0° and 20°N, and southern hemisphere), which could reflect an 372 unequal latitudinal intensity of human pressure. The presence of species with different 373 sensibilities (Fritz et al., 2009) is also likely responsible for this observed difference. 374 This result obtained through a statistical approach agrees with that obtained by Faurby 375 & Araujo (2016) that looked at the comparison between current and historical ranges. 376 Under the minimal human impact scenario, the largest absolute increase of 377 body mass was predicted in northern temperate areas, Sub-Saharian Africa and South-378 East Asia, whereas when expressed as relative increase it was more evenly 379 distributed. These changes likely reflect distinct processes. The difference between

380 expected and observed body mass might reflect the loss of megafauna that occurred 381 during the late-Pleistocene and Holocene (Lister & Stuart, 2007; Barnosky & 382 Lindsey, 2010; Woinarski et al., 2015). Yet, is likely that our model mostly capture 383 more recent impacts. In northern temperate areas large species have disappeared in 384 historical times, such as the auroch (Bos primigenius) and the tarpan (Equus ferus 385 *ferus*), while others have largely contracted their ranges, especially ungulates and 386 carnivores. Africa hosts the largest mammalian fauna today, although populations of 387 African mammals have declined substantially in recent times due to human impacts 388 (Craigie et al., 2010; Di Marco et al., 2014b), and many large species such as the 389 African elephant (*Loxodonta africana*) or the white rhino (*Ceratotherium simum*) 390 have suffered recent and severe range contractions (Ripple et al., 2014, 2015; IUCN, 391 2015). India and Southeast Asia have also experienced widespread range contractions 392 and the loss of some large-bodied species recently due to the interactive effect of 393 unsustainable hunting, habitat degradation, and more recently illegal wildlife trade 394 (Sodhi et al., 2004; Corlett, 2007).

395

396 <u>4.2. Potential limitations of our approach</u>

397 The comparison of our approach with estimates based on historical distribution ranges 398 showed some diverse results for median and maximum body mass. Median body mass 399 showed no agreement with historical data, whereas maximum body mass showed 400 moderate agreement but also highlighted regional variation. The difference in median 401 body mass can be attributed to the large areas in which median body mass is predicted 402 to have increased by historical data (Fig. S3). This can be caused by the recent loss of 403 small species that is not captured by our model, which is mostly influenced by areas 404 in which large mammals have decreased. Assemblage-level analyses are indeed more

405 influenced by large species as these are more widely distributed than smaller species 406 (Slavenko & Meiri, 2015). Regional differences between the approaches may occur 407 because of limitations in our approach, only based on current data, but also because of 408 limitations in the historical dataset. In fact, although we treated the data derived from 409 the historical dataset as "observed data", these are necessarily associated to the level 410 of information available, and are a coarse representation of past species distributions. 411 Yet, by using a different approach we reached the same conclusion of Faurby & 412 Araújo (2016) that humans have distorted body mass distributions in mammal 413 assemblages.

414 One of the limitations in our dataset is that we could not account for the effect 415 of historical over-exploitation, which has likely driven many species to extinction 416 (Faurby & Svenning, 2015; Bartlett et al., 2016). Another potential limitation of our 417 analyses is that we used some environmental variables (e.g., evapotranspiration and 418 primary productivity) that likely reflect human impacts indirectly via habitat 419 modification (fire regimes and agriculture) and climate change. Thus, the minimal 420 impact scenario does not represent pristine conditions, and this makes our estimates of 421 body mass reduction conservative. On the other hand, past extinctions also reflect 422 changes in environmental conditions, not just human impacts, so not all changes in 423 body mass distribution may have been caused by human actions. For example, it is 424 still debated whether early Pleistocene extinctions are to be attributed to climate 425 change, human impact or the combined effect of both (see Koch & Barnosky, 2006; 426 Araujo et al., 2015; Cooper et al., 2015; Bartlett et al., 2016). Similarly, elevation 427 range was used as environmental predictor of mesoscale climatic variation and 428 environmental heterogeneity following previous work (Rodríguez et al., 2006; 429 Rodriguez et al., 2008; Diniz-Filho et al., 2009; Olson et al., 2009). Yet areas with

high range of elevation are also likely less accessible to humans, and therefore may
also act as a proxy of human impact. Nevertheless, the main scope of our approach is
heuristic rather than predictive, and its merit is to illustrate the potential to assess the
relative contribution of recent human impact in altering the body mass of mammal
species assemblages, and to highlight the need for considering human impact
variables to understand macroecological patterns.

436

437 <u>4.3. Conclusion</u>

438 Current body mass distribution is the result of the interaction between natural and 439 anthropogenic factors. Macroecological investigation has traditionally focused on the 440 underlying environmental predictors of natural patterns, but we live in an era of rapid 441 global change. Neglecting the effect of human impact on global macroecological 442 patterns can lead to misleading conclusions on the underlying causes of species 443 distribution (Diniz-Filho et al., 2009; Di Marco & Santini, 2015a; Torres-Romero & 444 Olalla-Tárraga, 2015). Although in many cases macroecological studies are only 445 interested in the underlying environmental predictors of natural patterns, neglecting 446 human impact can lead to misrepresentations and potentially biased estimates of the 447 relative contribution of environmental variables. In fact, human impact and 448 environmental conditions are partly correlated (Table S1), since the former includes 449 processes such as agricultural intensification, urbanisation, and deforestation, which 450 are dependent upon the environmental context. There is a risk that a given 451 environmental variable is found to be a good macroecological predictor, while in fact 452 it is just a distal proxy of suitability for human activities. 453 Since the ecological determinants of local extinctions may be extremely slow 454 to manifest, being barely noticed in a lifetime, macroecological studies are at risk of

455 incorrectly assuming that the large-scale patterns that we observe today are 456 sufficiently close to pristine natural conditions. In a sense, this may extend the notion 457 of "shifting baseline syndrome" (Papworth et al., 2009) to "shifting macroecological 458 baseline": when the first macroecological investigations started, our understanding of 459 global geographic patterns was based on a situation which was already compromised. 460 Incorporating anthropogenic variables into statistical models of macroecological 461 patterns may permit to account for this issue. However, this is unlikely to completely 462 wipe out the effect of humans from the patterns, due to the inherent difficulty in 463 representing some specific (e.g. hunting) and/or prehistorical human impacts. An 464 informed interpretation that considers possible alterations from the original condition 465 is ultimately necessary.

466

467 Acknowledgements

468 We thank Luigi Maiorano, Francesco Ficetola, Miguel Olalla-Tárraga, Søren Faurby,

469 Jens-Christian Svenning, Yolanda Wiersma and an anonymous reviewer for providing

470 constructive comments that improved the manuscript.

471

472 **References**

473 Adams D.C. & Church J.O. (2011) The evolution of large-scale body size clines in

474 Plethodon salamanders: evidence of heat-balance or species-specific artifact?
475 *Ecography*, 34, 1067 1075.

- 476 Allendorf F.W. & Hard J.J. (2009) Human-induced evolution caused by unnatural
- 477 selection through harvest of wild animals. *Proceedings of the National Academy*
- 478 *of Sciences of the United States of America*, **106 Suppl**, 9987–9994.
- 479 Amante C. & Eakins B.W. (2009) ETOPO1 1 Arc-Minute Global Relief Model:

- 480 Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS
 481 NGDC-24. National Geophysical Data Center, NOAA, .
- 482 Araujo B.B.A., Oliveira-Santos L.G.R., Lima-Ribeiro M.S., Diniz-Filho J.A.F., &
- 483 Fernandez F.A.S. (2015) Bigger kill than chill: The uneven roles of humans and
- 484 climate on late Quaternary megafaunal extinctions. *Quaternary International*, .
- 485 Barnosky A.D. & Lindsey P.A. (2010) Timing of Quaternary megafaunal extinction
- 486 in South America in relation to human arrival and climate change. *Quaternary*487 *International*, 217, 10–29.
- 488 Bartlett L.J., Williams D.R., Prescott G.W., Balmford A., Green R.E., Eriksson A.,
- 489 Valdes P.J., Singarayer J.S., & Manica A. (2016) Robustness despite uncertainty:
- 490 regional climate data reveal the dominant role of humans in explaining global
- 491 extinctions of Late Quaternary megafauna. *Ecography*, **39**, 152–161.
- Bergmann C. (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer
 Grösse. *Gottinger studien*, **3**, 595–708.
- 494 Blackburn T.M., Gaston K.J., & Loder N. (1999) Geographic gradients in body size: a
- 495 clarification of Bergmann's rule. *Diversity and Distributions*, **5**, 165–174.
- Blackburn T.M. & Hawkins B.A. (2004) Bergmann's rule and the mammal fauna of
 northern North America. *Ecography*, 27, 715–724.
- Brown J.H. & Lee A.K. (1969) Bergmann's rule and climatic adaptation in woodrats
 (Neotoma). *Evolution*, 23, 329–338.
- 500 Burnham K.P. & Anderson D.R. (2002) Model Selection and Multimodel Inference: A
- 501 *Practical Information-Theoretic Approach.* Springer, New York.
- 502 Calder W.A. (1984) Size, function and life history. Harvard University Press,
- 503 Cambridge, Mass.
- 504 Cardillo M., Mace G.M., Jones K.E., Bielby J., Bininda-Emonds O.R.P., Sechrest W.,

- 505 Orme C.D.L., & Purvis A. (2005) Multiple causes of high extinction risk in large
 506 mammal species. *Science*, **309**, 1239–1241.
- 507 CIESIN & CIAT (2005) Gridded Population of the World, Version 3 (GPWv3):
- 508 Population Density Grid. NASA Socioeconomic Data and Applications Center
 509 (SEDAC), Palisades, NY. .
- 510 Cooper A., Turney C., Hughen K.A., Brook B.W., McDonald H.G., & Bradshaw
- 511 C.J.A. (2015) Abrupt warming events drove Late Pleistocene Holarctic

512 megafaunal turnover. *Science*, **349**, 602–606.

- 513 Corlett R. (2007) The impact of hunting on the mammalian fauna of tropical Asian
 514 forests. *Biotropica*, **39**, 292–303.
- 515 Craigie I.D., Baillie J.E.M., Balmford A., Carbone C., Collen B., Green R.E., &
- Hutton J.M. (2010) Large mammal population declines in Africa's protected
 areas. *Biological Conservation*, 143, 2221–2228.
- 518 Damuth J. (1981) Population density and body size in mammals. *Nature*, **290**, 699–
 519 700.
- 520 Di Marco M., Boitani L., Mallon D., Hoffmann M., Iacucci A., Meijaard E., Visconti
- 521 P., Schipper J., & Rondinini C. (2014a) A retrospective evaluation of the global
 522 decline of carnivores and ungulates. *Conservation Biology*, 28, 1109–1118.
- 523 Di Marco M., Buchanan G.M., Szantoi Z., Holmgren M., Grottolo Marasini G., Gross
- 524 D., Tranquilli S., Boitani L., & Rondinini C. (2014b) Drivers of extinction risk in
- 525 African mammals: the interplay of distribution state, human pressure,
- 526 conservation response and species biology. *Philosophical Transactions of the*
- 527 *Royal Society of London B Biological Sciences*, **369**, 20130198.
- 528 Di Marco M., Collen B., Rondinini C., & Mace G. (2015) Historical drivers of
- 529 extinction risk: using past evidence to direct future monitoring. *Proceedings of*

- 530 *the Royal Society B*, **282**, 20150928.
- 531 Di Marco M. & Santini L. (2015a) Human pressures predict species' geographic
- range size better than biological traits. *Global Change Biology*, **21**, 2169–2178.
- 533 Di Marco M. & Santini L. (2015b) Climatic tolerance or geographic breadth: what are
 534 we measuring? *Global Change Biology*, 22, 972–973.
- 535 Diniz-Filho J.A.F., Rodrìguez M.A., Bini L.M., Olalla-Tarraga M.A., Cardillo M.,
- 536 Nabout J.C., Hortal J., & Hawkins B.A. (2009) Climate history, human impacts
- 537and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary

scales. *Journal of Biogeography*, **36**, 2222–2236.

- 539 Diniz-Filho J.A.F., de Sant'Ana C.E.R., & Bini L.M. (1998) An Eigenvector Method
- 540 for Estimating Phylogenetic Inertia. *Evolution*, **52**, 1247–1262.
- 541 Dirzo R., Young H.S., Galetti M., Ceballos G., Isaac N.J.B., & Collen B. (2014)
 542 Defaunation in the Anthropocene. *Science*, 345, 401–406.
- 543 Dunbrack R.L. & Ramsay M.A. (1993) The allometry of mammalian adaptations to
- seasonal environments: a critique of the fasting endurance hypothesis. *Oikos*, 66,
 336–342.
- Ellis E.C., Kaplan J.O., Fuller D.Q., Vavrus S., Goldewijk K.K., & Verburg P.H.
- 547 (2013) Used planet: A global history. *Proceedings of the National Academy of*548 *Sciences*, **110**, 7978–7985.
- Faurby S. & Araújo M.B. (2016) Anthropogenic impacts weaken Bergmann's rule. *Ecography*, .
- 551 Faurby S. & Svenning J. (2016) Resurrection of the Island Rule: Human-Driven
- 552 Extinctions Have Obscured a Basic Evolutionary Pattern. *The American*
- 553 *Naturalist*, **187**, 812–820.
- 554 Faurby S. & Svenning J.C. (2015) Historic and prehistoric human-driven extinctions

- have reshaped global mammal diversity patterns. *Diversity and Distributions*, 21,
 1155–1166.
- Fenchel T. (1974) Intrinsic Rate of Natural Increase: The Relationship with Body
 Size. *Oecologia*, 14, 317–326.
- 559 Freckleton R.P., Cooper N., & Jetz W. (2011) Comparative Methods as a Statistical
- 560 Fix: The Dangers of Ignoring an Evolutionary Model. **178**, E10–E17.
- 561 Fritz S.A., Bininda-Emonds O.R.P., & Purvis A. (2009) Geographical variation in
- 562 predictors of mammalian extinction risk: Big is bad, but only in the tropics.
- 563 *Ecology Letters*, **12**, 538–549.
- 564 Goodman S.M., Rasoloarison R.M., & Ganzhorn J.U. (2004) On the specific
- identification of subfossil Cryptoprocta (Mammalia, Carnivora) from
- 566 Madagascar. *Zoosystema*, **26**, 129–143.
- 567 Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., & Jarvis A. (2005) Very high
- resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965–1978.
- 570 IONIA (2009) Globcover land cover. See http://ionia1.esrin.esa.int . .
- 571 IUCN (2015)
- 572 James F.C. (1970) Geographic size variation in birds and its relationship to climate.
- 573 *Ecology*, **51**, 365–390.
- 574 Johnson C.N. (2002) Determinants of loss of mammal species during the Late
- 575 Quaternary "megafauna" extinctions: life history and ecology, but not body size.
- 576 *Proceedings of the Royal Society B*, **269**, 2221–2227.
- 577 Jones K.E., Bielby J., Cardillo M., Fritz S.A., O'Dell J., Orme C.D.L., Safi K.,
- 578 Sechrest W., Boakes E.H., Carbone C., Connolly C., Cutts M.J., Foster J.K.,
- 579 Grenyer R., Habib M., Plaster C.A., Price S.A., Rigby E.A., Rist J., Teacher A.,

- 580 Bininda-Emonds O.R.P., Gittleman J.L., Mace G.M., Purvis A., & Michener
- 581 W.K. (2009) PanTHERIA: a species-level database of life history, ecology, and
- 582 geography of extant and recently extinct mammals. *Ecology*, **90**, 2648.
- 583 Kissling W.D. & Carl G. (2008) Spatial autocorrelation and the selection of
- 584 simultaneous autoregressive models. *Global Ecology and Biogeography*, **17**, 59–
- 585 71.
- 586 Koch P.L. & Barnosky A.D. (2006) Late Quaternary Extinctions: State of the Debate.
 587 *Annual Review of Ecology and Systematics*, 37, 215–250.
- Legendre P. & Legendre L. (1998) Numerical ecology. *Numerical Ecology Second English Edition*, 20, 870.
- Lewin-Koh N. & Bivand R. (2011) maptools: Tools for reading and handling spatial
 objects. *R package version* ..., 74.
- Lindstedt S.L. & Boyce M.S. (1985) Seasonality, fasting endurance, and body size in
 mammals. *American Naturalist*, **125**, 873–878.
- Lister A. & Stuart A.J. (2007) Patterns of Late Quaternary megafaunal extinctions in
- Europe and northern Asia. *Courier Forschungsinstitut Senckenberg*, 259, 289–
 299.
- Lyons S.K., Smith F.A., & Brown J.H. (2004) Of mice, mastodons and men: Humanmediated extinctions on four continents. *Evolutionary Ecology Research*, 6, 339–
- 599 358.
- 600 MacPhee R.D.E. & Grimaldi D.A. (1996) Mammal bones in Dominican amber.
- 601 *Nature*, **380**, 489–490.
- Maurer B. a, Brown J.H., & Rusler R.D. (1992) The Micro and Macro in Body Size
 Evolution. *Evolution*, 46, 939–953.
- 604 McNab B.K. (2010) Geographic and temporal correlations of mammalian size

- 605 reconsidered: A resource rule. *Oecologia*, **164**, 13–23.
- Meiri S. (2011) Bergmann's Rule what's in a name? *Global Ecology and Biogeography*, 20, 203–207.
- Meiri S. & Thomas G.H. (2007) The geography of body size challenges of the
 interspecific approach. *Global Ecology and Biogeography*, 16, 689–693.
- 610 Milner-Gulland E.J. & Bennet E.L. (2003) Wild meat: the bigger picture. *Trends in*
- 611 *Ecology & Evolution*, **18**, 351–357.
- 612 Morales-Castilla I., Olalla-Tárraga M.Á., Purvis A., Hawkins B. a., & Rodríguez
- 613 M.Á. (2012) The Imprint of Cenozoic Migrations and Evolutionary History on
- the Biogeographic Gradient of Body Size in New World Mammals. *The*
- 615 *American Naturalist*, **180**, 246–256.
- 616 Morrison J.C., Sechrest W., Dinerstein E., Wilcove D.S., & Lamoreux J.F. (2007)
- 617 Persistence of large mammal faunas as indicators of global human impacts.

618 *Journal of Mammalogy*, **88**, 1363–1380.

- 619 Murray B.R. & Dickman C.R. (2000) Relationships between body size and
- 620 geographical range size among Australian mammals: has human impact distorted
- 621 macroecological patterns? *Ecography*, **23**, 92–100.
- 622 Nelson A. (2008) Travel Time to Major Cities: A Global Map of Accessibility.
- 623 Global Environment Monitoring Unit Joint Research Centre of the European
 624 Commission, Ispra, Italy., .
- 625 Newbold T., Hudson L.N., Arnell A.P., Contu S., Palma A.D., Ferrier S., Hill S.L.L.,
- 626 Hoskins A.J., Lysenko I., Phillips H.R.P., Burton V.J., Chng C.W.T., Emerson
- 627 S., Gao D., Pask-Hale G., Hutton J., Jung M., Sanchez-Ortiz, K., Simmons B.I.,
- 628 Whitmee S., & Zhang H. (2016) Has land use pushed terrestrial biodiversity
- beyond the planetary boundary? A global assessment. *Science*, **353**, 288–291.

630	Olalla-Tárraga M.A., Torres-Romero E.J., Amado T.F., & Martinez P.A. (2015)
631	Phylogenetic path analysis reveals the importance of niche-related biological
632	traits on geographic range size in mammals. Global Change Biology, 21, 3194-
633	3196.
634	Olalla- Tárraga M.Á., Bini L.M., Diniz- Filho J.A., & Rodríguez M.Á. (2010)
635	Cross- species and assemblage- based approaches to Bergmann's rule and the
636	biogeography of body size in Plethodon salamanders of eastern North America.
637	<i>Ecography</i> , 33 , 362–368.
638	Olson V.A., Davies R.G., Orme D.L., Thomas G.H., Meiri S., Blackburn T.M.,
639	Gaston K.J., Owens I.P.F., & Bennett P.M. (2009) Global biogeography and
640	ecology of body size in birds. Ecology Letters, 12, 249–259.
641	Pacifici M., Santini L., Di Marco M., Baisero D., Francucci L., Grottolo Marasini G.,
642	Visconti P., & Rondinini C. (2013) Generation length for mammals. Nature
643	Conservation, 5, 87–94.
644	Papworth S.K., Rist J., Coad L., & Milner-Gulland E.J. (2009) Evidence for shifting
645	baseline syndrome in conservation. Conservation Letters, 2, 93–100.
646	Purvis A., Agapow P.M., Gittleman J.L., & Mace G.M. (2000) Nonrandom Extinction
647	and the Loss of Evolutionary History. Science, 288, 328-330.
648	R Core Team (2016) R: A language and environment for statistical computing. R
649	Foundation for Statistical Computing, Vienna, Austria. http://www.R-
650	project.org/, .
651	Raffalovich L.E., Deane G.D., Armstrong D., & Tsao HS. (2008) Model selection
652	procedures in social research: Monte-Carlo simulation results. Journal of Applied
653	<i>Statistics</i> , 35 , 1093–1114.
654	Ripple W.J., Estes J.A., Beschta R.L., Wilmers C.C., Ritchie E.G., Hebblewhite M.,

- Berger J., Elmhagen B., Letnic M., Nelson M.P., Schmitz O.J., Smith D.W.,
- 656 Wallach A.D., & Wirsing A.J. (2014) Status and Ecological Effects of the
- 657 World's Largest Carnivores. *Science*, **343**, 1241484.
- 658 Ripple W.J., Newsome T.M., Wolf C., Dirzo R., Everatt K.T., Galetti M., Hayward
- 659 M.W., Kerley G.I.H., Levi T., Lindsey P.A., Macdonald D.W., Malhi Y., Painter
- 660 L.E., Sandom C.J., Terborgh J., & Van Valkenburgh B. (2015) Collapse of the
- 661 world's largest herbivores. *Science Advances*, **1**, e1400103.
- 662 Ripple W.J. & Van Valkenburgh B. (2010) Linking Top-down Forces to the
- 663 Pleistocene Megafaunal Extinctions. *BioScience*, **60**, 516–523.
- 664 Rodríguez M.A., López-Sañudo I.L., & Hawkins B.A. (2006) The geographic
- distribution of mammal body size in Europe. *Global Ecology and Biogeography*,
 15, 173–181.
- 667 Rodriguez M.A., Olalla-Tárraga M.A., & Hawkins B.A. (2008) Bergmann's rule and
- the geography of mammal body size in the Western Hemisphere. *Global Ecology and Biogeography*, **17**, 274–283.
- 670 Slavenko A. & Meiri S. (2015) Mean body sizes of amphibian species are poorly

671 predicted by climate. *Journal of Biogeography*, 1246–1254.

- 672 Smith F.A., Lyons K., Morgan Ernest S.K., Jones K.E., Kaufman D.M., Dayan T.,
- Marquet P.A., Brown J.H., & Haskell J.P. (2003) Body mass of late quaternary
 mammals. *Ecology*, 84, 3403–3403.
- 675 Smith F.A. & Lyons S.K. (2011) How big should a mammal be? A macroecological
- look at mammalian body size over space and time. *Philosophical Transactions of the Royal Society of London B Biological Sciences*, 366, 2364–2378.
- 678 Sodhi N.S., Koh L.P., Brook B.W., & Ng P.K.L. (2004) Southeast Asian biodiversity:
- An impending disaster. *Trends in Ecology and Evolution*, **19**, 654–660.

680	Speakman J.R. & Król E. (2010) Maximal heat dissipation capacity and hyperthermia
681	risk: neglected key factors in the ecology of endotherms. Journal of Animal
682	<i>Ecology</i> , 79 , 726–746.
683	Torres-Romero E.J. & Olalla-Tárraga M.A. (2015) Untangling human and
684	environmental effects on geographical gradients of mammal species richness: a
685	global and regional evaluation. Journal of Animal Ecology, 84, 851–860.
686	Villalobos F., Olalla-Tárraga M.Á., Cianciaruso M. V., Rangel T.F., & Diniz-Filho
687	J.A.F. (2016) Global patterns of mammalian co-occurrence: phylogenetic and
688	body size structure within species ranges. Journal of Biogeography, 1–11.
689	van Vuure C. (2005) Retracing the aurochs: history, morphology and ecology of an
690	extinct wild ox. Pensoft, Sofia-Moscow.
691	Woinarski J.C., Burbidge A.A., & Harrison P.L. (2015) Ongoing unraveling of a
692	continental fauna: Decline and extinction of Australian mammals since European
693	settlement. Proceedings of the National Academy of Sciences, 112, 4531-4540.
694	Woodroffe R. (2000) Predators and people: using human densities to interpret
695	declines of large carnivores. Animal Conservation, 3, 165–173.

Table 1. Comparison of SAR models explaining the observed distribution of median (Med), maximum body mass represented as the 90th percentile (Max) and body mass skewness (Skew). Only the most supported models are shown here ($\omega \ge 0.1$; see Table S5 for all models). df = degree of freedom; BIC = Bayesian Information Criterion; ΔBIC = difference in BIC with the best model; ω = BIC weight; R_{sp}^2 = variance explained by the fixed factor and the spatial autocorrelation combined; R_{nsp}^2 = variance explained by the fixed factors only. C1-2 = First two principal components explaining ~ 65% of the variance of environmental variables and order richness; Acc = Accessibility; pAg = Percentage of agricultural areas; PD = Population density; YFU = Year from first land use; ISL = factor to classify cells as islands (ISL1 = <25,000 km²; ISL2 = <100,000 km²; ISL3 = <500,000 km²; ISL4 = <750,000,000 km²).

Formula	df	BIC	ΔΒΙϹ	ω	\mathbf{R}^{2}_{sp}	R ² nsp	Int	C1	C2	Acc	YFU	pAg	ISL4
$\overline{Med} \sim C1 + C2 + YFU + Acc$	7	-8564.03	0	0.95	0.94	0.08	-0.354 (0.019) *	0.011 (0.007)	-0.071 (0.011) *	0.032 (0.005) *	-0.017 (0.004) *	-	-
$Max \sim ISL4 + C1 + C2 + Acc$	7	-17291.36	0	0.94	0.92	0.17	1.466 (0.014) *	0.000 (0.005)	0.035 (0.009) *	0.037 (0.004) *	-	-	-0.183 (0.017) *
$Skew \sim ISL4 + C1 + C2 + YFU + Acc$	8	-39027.21	0	0.43	0.91	0.30	0.561 (0.005) *	-0.042 (0.002)*	-0.013 (0.004) *	-0.004 (0.002) *	0.003 (0.001)	-	-0.091 (0.007) *
$Skew \sim ISL4 + C1 + C2 + Acc + pAg$	8	-39026.66	0.54	0.33	0.91	0.30	0.561 (0.005) *	-0.042 (0.002) *	-0.012 (0.004) *	-0.004 (0.002) *	-	0.003 (0.002)	-0.091 (0.007) *
$Skew \sim ISL4 + C1 + C2 + Acc$	7	-39025.27	1.94	0.16	0.91	0.30	0.561 (0.005) *	-0.043 (0.002) *	-0.013 (0.004) *	-0.005 (0.002) *	-	-	-0.090 (0.007) *

Table 2. Difference (Δ) of the estimated coefficients and standard errors (in brackets) of intercepts and slopes describing the relationship between latitude and predicted body mass according to the two scenarios of human impact (*Body mass ~ Human_Impact + Latitude:Human_Impact*). Δ = Coefficient for the minimal impact scenario - Coefficient for the observed impact scenario; N = Northern hemisphere; S = Southern hemisphere; * = P-value <0.05; df = degree of freedom. Significance indicates a significant alteration of the relationship between latitude and body mass. Standard errors equal to zero are due to the rounding of the fourth decimal value.

Model	Δ Intercept	Δ Slope latitude
Med (Northern hemisphere)	0.214(0.003)*	-0.002(1x10 ⁻⁴)*
Med (0° - 20°)	0.123(0.004)*	0.002(3x10 ⁻⁴)*
Med (Southern hemisphere)	0.128(0.002)*	-4x10 ⁻⁴ (1x10 ⁻⁴)*
Max (Northern hemisphere)	12.670(0.121)*	-0.051(0.002)*
Max (0°- 20°)	8.752(0.127)*	0.049(0.011)*
Max (Southern hemisphere)	8.182(0.105)*	-0.070(0.005)*

Figures

Fig. 1. Median (a) and maximum (b) values of body mass in terrestrial mammals (values on a log-10 scale aggregated into grids of 1 degree). Cells with \leq 5 species are represented in grey (and were not considered in the analyses). The maximum is reported as the 90% percentile of the body mass distribution (only for cells with >10 species).

Fig. 2. Relationship between latitude and median and maximum body mass. Continuous lines represent the predictions with human impact, whereas dashed lines the predictions without human impact.

Fig. 3. Difference in predicted body mass between the observed and minimal impact scenarios. The plots report the absolute difference in median (a) and maximum (b) body mass values, and the relative (%) difference in median (c) and maximum (d) body mass values. Cells with \leq 5 and \leq 10 species are represented in grey for median and maximum respectively (and were not considered in the analyses).
SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table S1. Correlation matrix of all variables used in the study.

Table S2. Importance values and broken-stick distribution of the principal components.

Table S3. Loadings of variables on the principal components.

Table S4. Moran Index test results for OLS model's residuals.

Table S5. Comparison of models explaining the observed distribution of median,

maximum body mass and body mass skewness based on BIC.

Table S6. Coefficient estimates for all models tested.

Table S7. Comparison of models explaining the observed distribution of median, maximum body mass and body mass skewness based on AIC.

Fig. S1. Correlograms for the null models of median and maximum body mass, and skewness in body mass distribution.

Fig. S2. Median (a) and maximum (b) values of body mass in terrestrial mammals estimated considering the historical geographic ranges from Faurby & Svenning (2015; values aggregated into grids of 1 degree, and log10-transformed). The maximum is reported as the 97.5% percentile of the body mass distribution.

Fig. S3. Difference in median (a) and maximum (b) body mass between current and historical body mass distributions, estimated considering the historical geographic ranges from Faurby & Svenning (2015; values aggregated into grids of 1 degree, and log10-transformed). Black areas are estimated to have increased mean and maximum body mass.

Biosketch

Luca Santini is a postdoctoral research fellow and his research primarily focuses on the link between macroecology and conservation biogeography, with main interests in species biological traits and their natural covariation, species distribution, patterns of spatial ecology, and the effect of anthropogenic impact in natural patterns.

Supplementary Materials

Shifting baseline in macroecology? Unraveling the influence of human impact on mammalian body mass

Luca Santini^{1,2*}, Manuela González-Suárez^{3,4}, Carlo Rondinini², Moreno Di Marco^{5,6}

¹ Department of Environmental Science, Radboud University, P.O. Box 9010, NL-6500 GL, Nijmegen, The Netherlands

²Global Mammal Assessment program, Department of Biology and Biotechnologies, Sapienza Università di Roma, Viale dell'Università 32, 00185 Rome, Italy

³ Department of Conservation Biology, Estación Biológica de Doñana - CSIC, 41092 Seville, Spain.

⁴ Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AS, UK

⁵ ARC Centre of Excellence for Environmental Decision, Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, QLD 4072 (Brisbane, Australia).

⁶ School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD 4072 (Brisbane, Australia).

Fig. S1. Correlograms for the null models of (a) median and (b) maximum body mass, and (c) skewness in body mass distribution.

Fig. S2. Median (a) and maximum (b) values of body mass in terrestrial mammals estimated considering the historical geographic ranges from Faurby & Svenning (2015; values aggregated into grids of 1 degree, and log10-transformed). The maximum is reported as the 97.5% percentile of the body mass distribution.

Fig. S3. Difference in median (a) and maximum (b) body mass between current and historical body mass distributions, estimated considering the historical geographic ranges from Faurby & Svenning (2015; values aggregated into grids of 1 degree, and log10- transformed). Black areas are estimated to have increased mean and maximum body mass.

Table S1. Correlation matrix of all variables used in the study. $pAg = Proportion of agricultural areas; PD = Population density; Acc = Accessibility; YFU = Year from first land use; Rich_O = Order richness; T = Mean annual temperature; Tcq = Mean temperature of the coldest quarter; Twq = Mean temperature of the warmest quarter; P = Mean annual precipitations; Pwq = Precipitations of the warmest quarter; Pdq = Precipitations of the driest quarter; TGR = Time since last glacial retreat; ER = Elevation range; NDVI = Normalized Difference of Vegetation Index; NDVI_cv = Within year coefficient of variation of the Normalized Difference of Vegetation Index; AET = Actual evapotraspiration; PET = Potential evapotraspiration. Correlation coefficients higher than 0.6 (or lower than -0.6) are highlighted in bold.$

	pAg	PD	Acc	YFU	Rich_O	Т	Tcq	Twq	Р	Pwq	Pdq	TGR	ER	NDVI	NDVI_cv
PD	0.71														
Acc	-0.68	-0.74													
YFU	0.73	0.66	-0.70												
Rich_O	0.49	0.48	-0.31	0.44											
Т	0.48	0.59	-0.41	0.42	0.59										
Tcq	0.49	0.58	-0.39	0.42	0.62	0.98									
Twq	0.38	0.55	-0.41	0.37	0.46	0.93	0.85								
Р	0.4	0.25	-0.24	0.34	0.45	0.09	0.16	-0.07							
Pwq	0.42	0.29	-0.22	0.36	0.50	0.15	0.22	-0.01	0.98						
Pdq	0.15	-0.04	-0.09	0.1	0.03	-0.3	-0.24	-0.4	0.64	0.53					
TGR	0.39	0.56	-0.28	0.3	0.32	0.47	0.42	0.52	-0.02	0.03	-0.18				
ER	0.16	0.17	-0.04	0.12	0.05	-0.06	-0	-0.18	0.11	0.13	0.13	0.08			
NDVI	0.22	0.14	-0.17	0.19	0.26	-0.14	-0.1	-0.23	0.68	0.65	0.56	-0.07	-0.02		
NDVI_cv	0.39	0.24	-0.39	0.41	0.25	-0.06	-0.03	-0.15	0.58	0.56	0.45	-0.12	0.05	0.65	
AET	0.26	0.23	-0.17	0.24	0.38	0.16	0.16	0.13	0.39	0.41	0.18	0.15	-0.03	0.32	0.23

	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10	Comp.11	Comp.12
Eigenvalue	3.99	3.72	1.07	0.83	0.66	0.57	0.42	0.34	0.28	0.10	0.01	0.00
Standard deviation	2.00	1.93	1.04	0.91	0.81	0.75	0.65	0.58	0.53	0.31	0.11	0.03
% of Variance	33.26	31.03	8.96	6.88	5.51	4.75	3.53	2.84	2.35	0.79	0.10	0.01
Cumulative %	33.26	64.29	73.25	80.13	85.64	90.38	93.92	96.75	99.10	99.90	99.99	100.00
Broken-stick %	25.86	17.53	13.36	10.58	8.50	6.83	5.44	4.25	3.210	2.29	1.45	0.69
Broken-stick cumulative %	25.86	43.39	56.75	67.33	75.83	82.66	88.10	92.36	95.57	97.85	99.31	100.00

Table S2. Importance values and broken-stick distribution of the principal components. PCA components with larger percentages of accumulated variance than the broken-stick variances are significant (Legendre and Legendre, 1998).

Table S3. Loadings of variables on the principal components (C).

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12 (C13
Taxonomic Order richness	-0.35	5-0.22	0.03	0.00	-0.20	-0.16	0.60	0.60	-0.16	0.11	-0.02	-0.00 -	0.35
Mean annual temperature	-0.19	0-0.46	5-0.02	-0.2	-0.05	0.04	-0.22	-0.00	0.11	-0.14	0.05	0.79 -	0.19
Mean temperature of the coldest quarter	-0.22	2-0.43	0.03	-0.24	-0.11	0.07	-0.19	0.02	0.14	-0.57	0.02	-0.55 -	0.22
Mean temperature of the warmest quarter	•-0.11	-0.47	-0.12	-0.08	0.08	0.02	-0.27	-0.07	0.06	0.77	-0.05	-0.26 -	0.11
Mean annual precipitations	-0.45	6 0.15	0.03	-0.10	-0.05	0.29	0.12	-0.33	-0.11	0.01	-0.74	0.03 -	0.45
Precipitations of the wettest quarter	-0.45	6 0.11	0.05	-0.08	-0.08	0.21	0.23	-0.45	-0.14	0.09	0.66	-0.03 -	0.45
Precipitations of the driest quarter	-0.25	0.32	0.08	-0.05	0.16	0.52	-0.43	0.56	5-0.12	0.05	0.12	-0.00 -	0.25
Time since last glacial retreat	-0.10	-0.3	0.26	0.46	0.75	0.05	0.13	-0.06	6-0.16	-0.14	-0.01	0.00 -	0.10
Elevation range	-0.05	6 0.06	5 0.92	-0.02	-0.20	-0.21	-0.14	-0.02	0.17	0.13	-0.02	-0.00 -	0.05
Primary productivity	-0.35	6 0.24	-0.16	0.01	0.28	-0.21	0.09	0.06	6 0.81	0.03	0.02	0.00 -	0.35
Primary productivity seasonality	-0.32	0.20	-0.11	-0.23	0.21	-0.69	-0.31	-0.01	-0.42	-0.05	-0.00	-0.01 -	0.32
Actual evapotranspiration	-0.27	-0.02	-0.15	0.79	-0.43	-0.11	-0.30	-0.03	0.00	-0.05	-0.00	-0.00 -	0.27

Table S4. Moran Index test results for OLS model's residuals. The Moran Index test the null hypothesis of no spatial autocorrelation. C1-2 = First two principal components explaining ~ 65% of the variance of environmental variables and order richness; Acc = Accessibility; pAg = Percentage of agricultural areas; PD = Population density; YFU = Year from first land use; ISL = factor to classify cells as islands (ISL1 = $<25,000 \text{ km}^2$; ISL2= $<100,000 \text{ km}^2$; ISL3 = $<500,000 \text{ km}^2$; ISL4 = $<750,000,000 \text{ km}^2$).

Model	Observed	Expectation	Variance	p-value
$Med \sim C1 + C2$	0.9241	-0.0002	3.7465×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + Acc$	0.9031	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + pAg$	0.9179	-0.0003	3.7462×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + PD$	0.9068	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + Acc + pAg$	0.9026	-0.0003	3.7458×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + YFU$	0.9162	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + YFU + PD$	0.908	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim C1 + C2 + YFU + Acc$	0.9014	-0.0003	3.7458×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2$	0.9241	-0.0002	3.7463×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + Acc$	0.9031	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + pAg$	0.918	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + PD$	0.9068	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + Acc + pAg$	0.9025	-0.0003	3.7455×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + YFU$	0.9162	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + YFU + PD$	0.9081	-0.0003	3.7455×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL1 + C1 + C2 + YFU + Acc$	0.9014	-0.0003	3.7455×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2$	0.9241	-0.0002	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2 + Acc$	0.903	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2 + pAg$	0.9178	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2 + PD$	0.9066	-0.0003	3.7456×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2 + Acc + pAg$	0.9025	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$

Model	Observed	Expectation	Variance	p-value
$Med \sim ISL2 + C1 + C2 + YFU$	0.916	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2 + YFU + PD$	0.9079	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL2 + C1 + C2 + YFU + Acc$	0.9014	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2$	0.9241	-0.0003	3.7460×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + Acc$	0.9031	-0.0003	3.7456×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + pAg$	0.918	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + PD$	0.9067	-0.0003	3.7456×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + Acc + pAg$	0.9025	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + YFU$	0.9162	-0.0003	3.7456×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + YFU + PD$	0.908	-0.0004	3.7452×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL3 + C1 + C2 + YFU + Acc$	0.9014	-0.0004	3.7453×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2$	0.9214	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + Acc$	0.9012	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + pAg$	0.9135	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + PD$	0.9033	-0.0003	3.7456×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + Acc + pAg$	0.9013	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + YFU$	0.9127	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + YFU + PD$	0.9046	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Med \sim ISL4 + C1 + C2 + YFU + Acc$	0.9002	-0.0004	3.7453×10 ⁻⁵	< 2.2×10 ⁻¹⁶
$Max \sim C1 + C2$	0.8983	-0.0002	3.8086×10 ⁻⁵	< 2.2×10 ⁻¹⁶
$Max \sim C1 + C2 + Acc$	0.8789	-0.0003	3.8082×10-5	$< 2.2 \times 10^{-16}$
$Max \sim C1 + C2 + pAg$	0.8818	-0.0003	3.8082×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim C1 + C2 + PD$	0.8855	-0.0003	3.8082×10-5	$< 2.2 \times 10^{-16}$
$Max \sim C1 + C2 + Acc + pAg$	0.8779	-0.0003	3.8078×10-5	$< 2.2 \times 10^{-16}$
$Max \sim C1 + C2 + YFU$	0.89	-0.0003	3.8082×10-5	$< 2.2 \times 10^{-16}$
$Max \sim C1 + C2 + YFU + PD$	0.8862	-0.0003	3.8078×10-5	$< 2.2 \times 10^{-16}$

Model	Observed	Expectation	Variance	p-value
$Max \sim C1 + C2 + YFU + Acc$	0.8782	-0.0003	3.8078×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL1 + C1 + C2$	0.8987	-0.0002	3.8083×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL1 + C1 + C2 + Acc$	0.8791	-0.0003	3.8079×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL1 + C1 + C2 + pAg$	0.8825	-0.0003	3.8079×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL1 + C1 + C2 + PD$	0.8861	-0.0003	3.8079×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL1 + C1 + C2 + Acc + pAg$	0.8783	-0.0004	3.8075×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL1 + C1 + C2 + YFU$	0.8907	-0.0003	3.8079×10-5	$< 2.2 \times 10^{-16}$
Max ~ ISL1+C1+C2+YFU+PD	0.8868	-0.0003	3.8075×10-5	$< 2.2 \times 10^{-16}$
Max ~ ISL1+C1+C2+YFU+Acc	0.8781	-0.0003	3.8075×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2$	0.8987	-0.0003	3.8081×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + Acc$	0.8799	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + pAg$	0.8826	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + PD$	0.8865	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + Acc + pAg$	0.8788	-0.0004	3.8073×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + YFU$	0.891	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + YFU + PD$	0.8872	-0.0004	3.8073×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL2 + C1 + C2 + YFU + Acc$	0.8788	-0.0004	3.8073×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL3 + C1 + C2$	0.8993	-0.0003	3.8081×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL3 + C1 + C2 + Acc$	0.881	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL3 + C1 + C2 + pAg$	0.8834	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL3 + C1 + C2 + PD$	0.8875	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL3 + C1 + C2 + Acc + pAg$	0.8797	-0.0004	3.8073×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL3 + C1 + C2 + YFU$	0.8917	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$
Max ~ ISL3+C1+C2+YFU+PD	0.8881	-0.0004	3.8073×10-5	$< 2.2 \times 10^{-16}$
Max ~ ISL3+C1+C2+YFU+Acc	0.88	-0.0004	3.8073×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL4 + C1 + C2$	0.8967	-0.0003	3.8081×10-5	$< 2.2 \times 10^{-16}$
$Max \sim ISL4 + C1 + C2 + Acc$	0.8759	-0.0003	3.8077×10-5	$< 2.2 \times 10^{-16}$

Model	Observed	Expectation	Variance	p-value
$Max \sim ISL4 + C1 + C2 + pAg$	0.8816	-0.0003	3.8077×10-5	< 2.2×10 ⁻¹⁶
$Max \sim ISL4 + C1 + C2 + PD$	0.8849	-0.0003	3.8077×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL4 + C1 + C2 + Acc + pAg$	0.8757	-0.0004	3.8073×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL4 + C1 + C2 + YFU$	0.8887	-0.0003	3.8077×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL4 + C1 + C2 + YFU + PD$	0.8854	-0.0004	3.8073×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Max \sim ISL4 + C1 + C2 + YFU + Acc$	0.8742	-0.0004	3.8073×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $C1+C2$	0.81	-0.0002	3.7465×10 ⁻⁵	< 2.2×10 ⁻¹⁶
Skew ~ $C1+C2+Acc$	0.7862	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim C1 + C2 + pAg$	0.7988	-0.0003	3.7462×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim C1 + C2 + PD$	0.7881	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim C1 + C2 + Acc + pAg$	0.7875	-0.0003	3.7458×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim C1 + C2 + YFU$	0.7916	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim C1 + C2 + YFU + PD$	0.7867	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Skew \sim C1 + C2 + YFU + Acc$	0.7865	-0.0003	3.7458×10-5	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2$	0.8086	-0.0002	3.7463×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2 + Acc$	0.7842	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2 + pAg$	0.7979	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2 + PD$	0.7866	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2 + Acc + pAg$	0.7858	-0.0003	3.7455×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2 + YFU$	0.7905	-0.0003	3.7459×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL1 + C1 + C2 + YFU + PD$	0.7854	-0.0003	3.7455×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ ISL1+C1+C2+YFU+Acc	0.7849	-0.0003	3.7455×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL2 + C1 + C2$	0.8098	-0.0002	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL2 + C1 + C2 + Acc$	0.7861	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Skew \sim ISL2 + C1 + C2 + pAg$	0.7987	-0.0003	3.7457×10-5	$< 2.2 \times 10^{-16}$
$Skew \sim ISL2 + C1 + C2 + PD$	0.788	-0.0003	3.7456×10-5	$< 2.2 \times 10^{-16}$

Model	Observed	Expectation	Variance	p-value
$Skew \sim ISL2 + C1 + C2 + Acc + pAg$	0.7874	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL2 + C1 + C2 + YFU$	0.7916	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL2 + C1 + C2 + YFU + PD$	0.7867	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ ISL2+C1+C2+YFU+Acc	0.7865	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL3+C1+C2$	0.8079	-0.0003	3.7460×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL3+C1+C2+Acc$	0.7849	-0.0003	3.7456×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL3+C1+C2+pAg$	0.7977	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL3 + C1 + C2 + PD$	0.787	-0.0003	3.7456×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL3+C1+C2+Acc+pAg$	0.7862	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL3 + C1 + C2 + YFU$	0.7905	-0.0003	3.7456×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL3 + C1 + C2 + YFU + PD$	0.7857	-0.0004	3.7452×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ ISL3+C1+C2+YFU+Acc	0.7854	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL4+C1+C2$	0.8085	-0.0003	3.7461×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL4 + C1 + C2 + Acc$	0.7829	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL4+C1+C2+pAg$	0.7982	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL4 + C1 + C2 + PD$	0.7863	-0.0003	3.7456×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ $ISL4+C1+C2+Acc+pAg$	0.7846	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL4 + C1 + C2 + YFU$	0.7903	-0.0003	3.7457×10 ⁻⁵	$< 2.2 \times 10^{-16}$
$Skew \sim ISL4 + C1 + C2 + YFU + PD$	0.7851	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$
Skew ~ ISL4+C1+C2+YFU+Acc	0.7837	-0.0004	3.7453×10 ⁻⁵	$< 2.2 \times 10^{-16}$

Table S5. Comparison of models explaining the observed distribution of median (Med), maximum body mass (Max) and body mass skewness (Skew). df = degree of freedom; BIC = Bayesian Information Criterion; Δ BIC = difference in BIC with the best model; ω = BIC weight; R²_{sp}= variance explained by the fixed factor and the spatial autocorrelation combined; R²_{nsp}= variance explained by the fixed factors only. C1-2 = First two principal components explaining ~ 65% of the variance of environmental variables and order richness; Acc = Accessibility; pAg = Percentage of agricultural areas; PD = Population density; YFU = Year from first land use; ISL = factor to classify cells as islands (ISL1 = <25,000 km²; ISL2= <100,000 km²; ISL3 = <500,000 km²; ISL4 = <750,000,000 km²).

Model	df	BIC	∆BIC	ω	R ² _{sp}	R ² nsp
$Med \sim C1 + C2 + YFU + Acc$	7	-8564.032	0	0.952	0.941	0.082
$Med \sim ISL4 + C1 + C2 + YFU + Acc$	8	-8557.369	6.662	0.034	0.941	0.086
$Med \sim ISL2 + C1 + C2 + YFU + Acc$	8	-8555.244	8.787	0.012	0.941	0.083
$Med \sim C1 + C2 + Acc$	6	-8550.977	13.054	0.001	0.941	0.091
$Med \sim C1 + C2 + Acc + pAg$	7	-8546.472	17.560	0	0.941	0.086
$Med \sim C1 + C2 + YFU + PD$	7	-8545.785	18.247	0	0.941	0.062
$Med \sim ISL4 + C1 + C2 + Acc$	7	-8544.118	19.914	0	0.941	0.096
$Med \sim ISL2 + C1 + C2 + Acc$	7	-8542.136	21.895	0	0.941	0.093
$Med \sim ISL4 + C1 + C2 + Acc + pAg$	8	-8540.032	24.000	0	0.941	0.091
$Med \sim ISL4 + C1 + C2 + YFU + PD$	8	-8539.507	24.525	0	0.941	0.067
$Med \sim ISL2 + C1 + C2 + Acc + pAg$	8	-8537.844	26.187	0	0.941	0.087
$Med \sim ISL2 + C1 + C2 + YFU + PD$	8	-8537.146	26.886	0	0.941	0.063
$Med \sim C1 + C2 + YFU$	6	-8532.794	31.238	0	0.941	0.046
$Med \sim C1 + C2 + PD$	6	-8527.818	36.213	0	0.941	0.068
$Med \sim ISL4 + C1 + C2 + YFU$	7	-8526.811	37.221	0	0.941	0.05
$Med \sim ISL2 + C1 + C2 + YFU$	7	-8524.359	39.672	0	0.941	0.047
$Med \sim ISL4 + C1 + C2 + PD$	7	-8521.359	42.673	0	0.941	0.074
$Med \sim ISL2 + C1 + C2 + PD$	7	-8519.137	44.894	0	0.941	0.069
$Med \sim C1 + C2 + pAg$	6	-8516.601	47.431	0	0.941	0.040
$Med \sim ISL4 + C1 + C2 + pAg$	7	-8511.129	52.903	0	0.941	0.045

Model	df	BIC	∆BIC	ω	R ² _{sp}	R ² nsp
$Med \sim C1 + C2$	5	-8509.927	54.104	0	0.94	0.045
$Med \sim ISL2 + C1 + C2 + pAg$	7	-8508.521	55.511	0	0.941	0.041
$Med \sim ISL4 + C1 + C2$	6	-8503.772	60.259	0	0.941	0.049
$Med \sim ISL2 + C1 + C2$	6	-8501.469	62.563	0	0.941	0.045
$Med \sim ISL1 + C1 + C2 + YFU + Acc$	8	-8483.757	80.275	0	0.941	0.082
$Med \sim ISL1 + C1 + C2 + Acc$	7	-8475.722	88.309	0	0.941	0.092
$Med \sim ISL3 + C1 + C2 + YFU + Acc$	8	-8470.895	93.136	0	0.941	0.082
$Med \sim ISL1 + C1 + C2 + Acc + pAg$	8	-8467.400	96.632	0	0.941	0.086
$Med \sim ISL3 + C1 + C2 + Acc$	7	-8463.246	100.785	0	0.941	0.092
$Med \sim ISL1 + C1 + C2 + YFU + PD$	8	-8460.357	103.675	0	0.941	0.062
$Med \sim ISL1 + C1 + C2 + YFU$	7	-8456.616	107.415	0	0.941	0.046
$Med \sim ISL3 + C1 + C2 + Acc + pAg$	8	-8454.669	109.363	0	0.941	0.086
$Med \sim ISL3 + C1 + C2 + YFU + PD$	8	-8447.793	116.238	0	0.941	0.062
$Med \sim ISL1 + C1 + C2 + PD$	7	-8446.668	117.363	0	0.941	0.068
$Med \sim ISL3 + C1 + C2 + YFU$	7	-8444.437	119.594	0	0.941	0.046
$Med \sim ISL1 + C1 + C2$	6	-8439.581	124.450	0	0.941	0.045
$Med \sim ISL1 + C1 + C2 + pAg$	7	-8438.970	125.062	0	0.941	0.04
$Med \sim ISL3 + C1 + C2 + PD$	7	-8434.580	129.452	0	0.941	0.068
$Med \sim ISL3 + C1 + C2$	6	-8427.942	136.090	0	0.94	0.045
$Med \sim ISL3 + C1 + C2 + pAg$	7	-8426.588	137.444	0	0.941	0.040
$Max \sim ISL4 + C1 + C2 + Acc$	7	-17291.362	0	0.943	0.925	0.218
$Max \sim ISL4 + C1 + C2 + Acc + pAg$	8	-17285.137	6.225	0.042	0.925	0.215
$Max \sim ISL4 + CI + C2 + YFU + Acc$	8	-17283.096	8.267	0.015	0.925	0.216
$Max \sim ISL2 + C1 + C2 + Acc$	7	-17264.127	27.236	0	0.925	0.176
$Max \sim ISL2 + C1 + C2 + Acc + pAg$	8	-17258.339	33.024	0	0.925	0.173
$Max \sim ISL2 + C1 + C2 + YFU + Acc$	8	-17256.035	35.328	0	0.925	0.173

Model	df	BIC	ΔΒΙϹ	ω	R ² _{sp}	R ² nsp
$Max \sim ISL4 + C1 + C2 + PD$	7	-17243.395	47.968	0	0.925	0.138
$Max \sim ISL4 + C1 + C2 + YFU + PD$	8	-17237.463	53.899	0	0.925	0.141
$Max \sim ISL4 + C1 + C2 + pAg$	7	-17237.179	54.184	0	0.925	0.124
$Max \sim ISL4 + C1 + C2$	6	-17230.968	60.395	0	0.925	0.105
$Max \sim ISL4 + C1 + C2 + YFU$	7	-17226.768	64.595	0	0.925	0.113
$Max \sim C1 + C2 + Acc$	6	-17224.934	66.428	0	0.924	0.173
$Max \sim C1 + C2 + Acc + pAg$	7	-17220.831	70.532	0	0.924	0.169
$Max \sim ISL2 + C1 + C2 + PD$	7	-17217.987	73.376	0	0.924	0.099
$Max \sim C1 + C2 + YFU + Acc$	7	-17217.072	74.290	0	0.924	0.169
$Max \sim ISL2 + C1 + C2 + pAg$	7	-17212.767	78.595	0	0.924	0.086
$Max \sim ISL2 + C1 + C2 + YFU + PD$	8	-17212.269	79.094	0	0.924	0.102
$Max \sim ISL2 + C1 + C2$	6	-17206.012	85.350	0	0.924	0.065
$Max \sim ISL2 + C1 + C2 + YFU$	7	-17202.041	89.322	0	0.924	0.073
$Max \sim C1 + C2 + PD$	6	-17181.267	110.095	0	0.924	0.093
$Max \sim C1 + C2 + pAg$	6	-17179.147	112.216	0	0.924	0.083
$Max \sim C1 + C2 + YFU + PD$	7	-17175.813	115.550	0	0.924	0.097
$Max \sim C1 + C2$	5	-17169.744	121.619	0	0.924	0.061
$Max \sim C1 + C2 + YFU$	6	-17166.060	125.302	0	0.924	0.069
$Max \sim ISL3 + C1 + C2 + Acc$	7	-16968.042	323.321	0	0.925	0.172
$Max \sim ISL3 + C1 + C2 + Acc + pAg$	8	-16960.956	330.407	0	0.925	0.170
$Max \sim ISL3 + C1 + C2 + YFU + Acc$	8	-16959.704	331.658	0	0.925	0.169
$Max \sim ISL1 + C1 + C2 + Acc$	7	-16930.867	360.496	0	0.925	0.173
$Max \sim ISL1 + C1 + C2 + Acc + pAg$	8	-16924.547	366.816	0	0.925	0.171
$Max \sim ISL1 + C1 + C2 + YFU + Acc$	8	-16922.507	368.856	0	0.925	0.170
$Max \sim ISL3 + C1 + C2 + PD$	7	-16900.981	390.381	0	0.925	0.099
$Max \sim ISL3 + C1 + C2 + pAg$	7	-16896.481	394.881	0	0.925	0.087
$Max \sim ISL3 + C1 + C2 + YFU + PD$	8	-16895.813	395.550	0	0.925	0.102

Model	df	BIC	ΔΒΙϹ	ω	R ² _{sp}	R ² nsp
$Max \sim ISL3 + C1 + C2$	6	-16889.228	402.134	0	0.925	0.068
$Max \sim ISL3 + C1 + C2 + YFU$	7	-16885.710	405.652	0	0.925	0.075
$Max \sim ISL1 + C1 + C2 + PD$	7	-16864.473	426.890	0	0.924	0.095
$Max \sim ISL1 + C1 + C2 + pAg$	7	-16861.819	429.544	0	0.924	0.083
$Max \sim ISL1 + C1 + C2 + YFU + PD$	8	-16859.229	432.134	0	0.924	0.098
$Max \sim ISL1 + C1 + C2$	6	-16852.920	438.442	0	0.924	0.062
$Max \sim ISL1 + C1 + C2 + YFU$	7	-16849.294	442.068	0	0.924	0.07
Skew ~ $ISL4 + C1 + C2 + YFU + Acc$	8	-39027.210	0	0.428	0.906	0.317
$Skew \sim ISL4 + C1 + C2 + Acc + pAg$	8	-39026.665	0.545	0.326	0.906	0.314
$Skew \sim ISL4 + C1 + C2 + Acc$	7	-39025.271	1.939	0.162	0.906	0.314
$Skew \sim ISL2 + C1 + C2 + YFU + Acc$	8	-39022.476	4.734	0.04	0.906	0.311
$Skew \sim ISL2 + C1 + C2 + Acc + pAg$	8	-39021.693	5.517	0.027	0.906	0.307
$Skew \sim ISL2 + C1 + C2 + Acc$	7	-39020.751	6.460	0.017	0.906	0.308
$Skew \sim ISL4 + C1 + C2 + YFU + PD$	8	-39003.944	23.266	0	0.906	0.309
$Skew \sim ISL4 + C1 + C2 + pAg$	7	-39002.62	24.590	0	0.906	0.303
$Skew \sim ISL2 + C1 + C2 + YFU + PD$	8	-38998.217	28.993	0	0.906	0.301
$Skew \sim ISL4 + C1 + C2 + PD$	7	-38997.566	29.644	0	0.906	0.304
$Skew \sim ISL2 + C1 + C2 + pAg$	7	-38996.541	30.670	0	0.906	0.294
$Skew \sim ISL4 + C1 + C2 + YFU$	7	-38995.982	31.228	0	0.906	0.305
$Skew \sim C1 + C2 + YFU + Acc$	7	-38995.865	31.345	0	0.905	0.282
Skew ~ $C1 + C2 + Acc$	6	-38994.575	32.635	0	0.905	0.28
$Skew \sim C1 + C2 + Acc + pAg$	7	-38993.117	34.093	0	0.905	0.279
$Skew \sim ISL2 + C1 + C2 + PD$	7	-38992.041	35.169	0	0.906	0.296
$Skew \sim ISL2 + C1 + C2 + YFU$	7	-38990.203	37.007	0	0.906	0.297
$Skew \sim ISL4 + C1 + C2$	6	-38985.954	41.256	0	0.906	0.298
$Skew \sim ISL2 + C1 + C2$	6	-38980.429	46.781	0	0.906	0.29

Model	df	BIC	∆BIC	ω	R ² _{sp}	R ² nsp
$Skew \sim C1 + C2 + YFU + PD$	7	-38971.029	56.181	0	0.906	0.273
$Skew \sim CI + C2 + PD$	6	-38965.287	61.923	0	0.906	0.269
$Skew \sim C1 + C2 + pAg$	6	-38965.246	61.964	0	0.906	0.267
$Skew \sim C1 + C2 + YFU$	6	-38961.953	65.257	0	0.906	0.270
Skew ~ $C1 + C2$	5	-38952.542	74.668	0	0.906	0.265
$Skew \sim ISL3 + C1 + C2$	6	-37803.795	1223.415	0	0.906	0.284
$Skew \sim ISL3 + C1 + C2 + Acc$	7	-37800.997	1226.213	0	0.906	0.303
$Skew \sim ISL3 + C1 + C2 + pAg$	7	-37799.445	1227.765	0	0.906	0.288
$Skew \sim ISL3 + C1 + C2 + YFU$	7	-37798.878	1228.332	0	0.906	0.291
$Skew \sim ISL3 + C1 + C2 + PD$	7	-37796.019	1231.191	0	0.906	0.29
$Skew \sim ISL3 + C1 + C2 + YFU + Acc$	8	-37794.495	1232.715	0	0.906	0.305
$Skew \sim ISL3 + C1 + C2 + Acc + pAg$	8	-37793.919	1233.291	0	0.906	0.301
$Skew \sim ISL1 + C1 + C2$	6	-37790.854	1236.356	0	0.906	0.279
$Skew \sim ISL3 + C1 + C2 + YFU + PD$	8	-37790.581	1236.629	0	0.906	0.295
$Skew \sim ISL1 + C1 + C2 + Acc$	7	-37787.999	1239.211	0	0.906	0.297
$Skew \sim ISL1 + C1 + C2 + YFU$	7	-37785.861	1241.349	0	0.906	0.286
$Skew \sim ISL1 + C1 + C2 + pAg$	7	-37785.581	1241.629	0	0.906	0.283
$Skew \sim ISL1 + C1 + C2 + PD$	7	-37783.385	1243.825	0	0.906	0.285
$Skew \sim ISL1 + C1 + C2 + YFU + Acc$	8	-37781.445	1245.765	0	0.906	0.299
$Skew \sim ISL1 + C1 + C2 + Acc + pAg$	8	-37780.278	1246.932	0	0.906	0.296
$Skew \sim ISL1 + C1 + C2 + YFU + PD$	8	-37777.834	1249.376	0	0.906	0.290

Table S6. Coefficient estimates (SE) for all models. C1-2 = First two principal components explaining ~ 65% of the variance of environmental variables and order richness; Acc = Accessibility; pAg = Percentage of agricultural areas; PD = Population density; YFU = Year from first land use; ISL = factor to classify cells as islands (ISL1 = <25,000 km²; ISL2 = <100,000 km²; ISL3 = <500,000 km²; ISL4 = <750,000,000 km²). P-values: * = <0.05; ** = <0.01; *** = <0.001.

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
$Med \sim C1 + C2$	-0.364 (0.019) ***	0.015 (0.007) *	-0.054 (0.011) ***	-	-	-	-	-	-	-	-
$Med \sim CI + C2 + Acc$	-0.356 (0.018) ***	0.013 (0.007)	-0.071 (0.011) ***	0.035 (0.005) ***	-	-	-	-	-	-	-
$Med \sim CI + C2 + pAg$	-0.359 (0.019) ***	0.013 (0.007)	-0.057 (0.011) ***	-	-0.014 (0.005) **	-	-	-	-	-	-
$Med \sim C1 + C2 + PD$	-0.361 (0.019) ***	0.010 (0.007)	-0.061 (0.011) ***	-	-	-0.020 (0.005) ***	-	-	-	-	-
$Med \sim CI + C2 + Acc + pAg$	-0.354 (0.019) ***	0.012 (0.007)	-0.071 (0.011) ***	0.034 (0.005) ***	-0.005 (0.005)	-	-	-	-	-	-
$Med \sim C1 + C2 + YFU$	-0.361 (0.019) ***	0.013 (0.007)	-0.056 (0.011) ***	-	-	-	-0.020 (0.004) ***	-	-	-	-
$Med \sim C1 + C2 + YFU + PD$	-0.358 (0.019) ***	0.008 (0.007)	-0.062 (0.011) ***	-	-	-0.018 (0.005) ***	-0.019 (0.004) ***	-	-	-	-
$Med \sim C1 + C2 + YFU + Acc$	-0.354 (0.019) ***	0.011 (0.007)	-0.071 (0.011) ***	0.032 (0.005) ***	-	-	-0.017 (0.004) ***	-	-	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
$Med \sim ISL1 + C1 + C2$	-0.385 (0.020) ***	0.015 (0.007) *	-0.054 (0.011) ***	-	-	-	-	0.065 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + Acc$	-0.377 (0.019) ***	0.012 (0.007)	-0.072 (0.011) ***	0.035 (0.005) ***	-	-	-	0.067 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + pAg$	-0.381 (0.020) ***	0.012 (0.007)	-0.057 (0.011) ***	-	-0.015 (0.005) **	-	-	0.068 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + PD$	-0.383 (0.020) ***	0.010 (0.007)	-0.061 (0.011) ***	-	-	-0.020 (0.005) ***	-	0.066 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + Acc + pAg$	-0.376 (0.020) ***	0.011 (0.007)	-0.072 (0.011) ***	0.034 (0.005) ***	-0.006 (0.005)	-	-	0.068 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + YFU$	-0.383 (0.020) ***	0.012 (0.007)	-0.056 (0.011) ***	-	-	-	-0.020 (0.004) ***	0.067 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + YFU + PD$	-0.381 (0.020) ***	0.008 (0.007)	-0.062 (0.011) ***	-	-	-0.018 (0.005) ***	-0.019 (0.004) ***	0.067 (0.019) ***	-	-	-
$Med \sim ISL1 + C1 + C2 + YFU + Acc$	-0.376 (0.019) ***	0.010 (0.007)	-0.072 (0.011) ***	0.032 (0.005) ***	-	-	-0.017 (0.004) ***	0.068 (0.019) ***	-	-	-
$Med \sim ISL2 + C1 + C2$	-0.374 (0.020) ***	0.015 (0.007) *	-0.055 (0.011) ***	-	-	-	-	-	0.026 (0.018)	-	-
$Med \sim ISL2 + C1 + C2 + Acc$	-0.366 (0.020) ***	0.012 (0.007)	-0.072 (0.011) ***	0.035 (0.005) ***	-	-	-	-	0.026 (0.018)	-	-
$Med \sim ISL2 + C1 + C2 + pAg$	-0.37 (0.020)	0.012 (0.007)	-0.057 (0.011)	-	-0.015 (0.005)	-	-	-	0.028 (0.018)	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
	***		***		**						
$Med \sim ISL2 + C1 + C2 + PD$	-0.371 (0.020) ***	0.010 (0.007)	-0.061 (0.011) ***	-	-	-0.020 (0.005) ***	-	-	0.025 (0.018)	-	-
$Med \sim ISL2 + CI + C2 + Acc + pAg$	-0.365 (0.020) ***	0.011 (0.007)	-0.072 (0.011) ***	0.033 (0.005) ***	-0.005 (0.005)	-	-	-	0.027 (0.018)	-	-
$Med \sim ISL2 + C1 + C2 + YFU$	-0.372 (0.020) ***	0.012 (0.007)	-0.057 (0.011) ***	-	-	-	-0.020 (0.004) ***	-	0.027 (0.018)	-	-
$Med \sim ISL2 + C1 + C2 + YFU + PD$	-0.369 (0.020) ***	0.008 (0.007)	-0.063 (0.011) ***	-	-	-0.018 (0.005) ***	-0.019 (0.004) ***	-	0.027 (0.018)	-	-
$Med \sim ISL2 + CI + C2 + YFU + Acc$	-0.365 (0.020) ***	0.010 (0.007)	-0.072 (0.011) ***	0.032 (0.005) ***	-	-	-0.017 (0.004) ***	-	0.028 (0.018)	-	-
$Med \sim ISL3 + C1 + C2$	-0.370 (0.021) ***	0.015 (0.007) *	-0.054 (0.011) ***	-	-	-	-	-	-	0.015 (0.02)	-
$Med \sim ISL3 + C1 + C2 + Acc$	-0.362 (0.020) ***	0.013 (0.007)	-0.071 (0.011) ***	0.035 (0.005) ***	-	-	-	-	-	0.016 (0.02)	-
$Med \sim ISL3 + CI + C2 + pAg$	-0.367 (0.021) ***	0.012 (0.007)	-0.057 (0.011) ***	-	-0.015 (0.005) **	-	-	-	-	0.018 (0.02)	-
$Med \sim ISL3 + C1 + C2 + PD$	-0.367 (0.020) ***	0.010 (0.007)	-0.061 (0.011) ***	-	-	-0.020 (0.005) ***	-	-	-	0.014 (0.02)	-
$Med \sim ISL3 + C1 + C2 + Acc + pAg$	-0.361 (0.020) ***	0.012 (0.007)	-0.072 (0.011) ***	0.034 (0.005) ***	-0.005 (0.005)	-	-	-	-	0.017 (0.02)	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
$Med \sim ISL3 + C1 + C2 + YFU$	-0.367 (0.021) ***	0.012 (0.007)	-0.056 (0.011) ***	-	-	-	-0.020 (0.004) ***	-	-	0.016 (0.02)	-
$Med \sim ISL3 + C1 + C2 + YFU + PD$	-0.365 (0.020) ***	0.008 (0.007)	-0.062 (0.011) ***	-	-	-0.018 (0.005) ***	-0.019 (0.004) ***	-	-	0.015 (0.02)	-
$Med \sim ISL3 + C1 + C2 + YFU + Acc$	-0.361 (0.020) ***	0.011 (0.007)	-0.071 (0.011) ***	0.032 (0.005) ***	-	-	-0.017 (0.004) ***	-	-	0.016 (0.02)	-
$Med \sim ISL4 + C1 + C2$	-0.377 (0.021) ***	0.015 (0.007) *	-0.055 (0.011) ***	-	-	-	-	-	-	-	0.030 (0.021)
$Med \sim ISL4 + C1 + C2 + Acc$	-0.369 (0.021) ***	0.013 (0.007)	-0.072 (0.011) ***	0.035 (0.005) ***	-	-	-	-	-	-	0.031 (0.021)
$Med \sim ISL4 + C1 + C2 + pAg$	-0.374 (0.021) ***	0.012 (0.007)	-0.057 (0.011) ***	-	-0.015 (0.005) **	-	-	-	-	-	0.034 (0.021)
$Med \sim ISL4 + C1 + C2 + PD$	-0.374 (0.021) ***	0.010 (0.007)	-0.061 (0.011) ***	-	-	-0.020 (0.005) ***	-	-	-	-	0.030 (0.021)
$Med \sim ISL4 + C1 + C2 + Acc + pAg$	-0.368 (0.021) ***	0.012 (0.007)	-0.072 (0.011) ***	0.033 (0.005) ***	-0.006 (0.005)	-	-	-	-	-	0.033 (0.021)
$Med \sim ISL4 + C1 + C2 + YFU$	-0.375 (0.021) ***	0.012 (0.007)	-0.057 (0.011) ***	-	-	-	-0.020 (0.004) ***	-	-	-	0.032 (0.021)
$Med \sim ISL4 + C1 + C2 + YFU + PD$	-0.372 (0.021) ***	0.008 (0.007)	-0.062 (0.011) ***	-	-	-0.018 (0.005) ***	-0.019 (0.004) ***	-	-	-	0.032 (0.021)
$Med \sim ISL4 + C1 + C2 + YFU + Acc$	-0.368 (0.021)	0.011 (0.007)	-0.072 (0.011)	0.032 (0.005)	-	-	-0.017 (0.004)	-	-	-	0.033 (0.021)

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
	***		***	***			***				
$Max \sim C1 + C2$	1.402 (0.014) ***	0.003 (0.005)	0.050 (0.009) ***	-	-	-	-	-	-	-	-
$Max \sim C1 + C2 + Acc$	1.415 (0.014) ***	0.001 (0.005)	0.036 (0.009) ***	0.036 (0.004) ***	-	-	-	-	-	-	-
$Max \sim C1 + C2 + pAg$	1.409 (0.014) ***	0.000 (0.006)	0.048 (0.009) ***	-	-0.017 (0.004) ***	-	-	-	-	-	-
$Max \sim C1 + C2 + PD$	1.408 (0.014) ***	-0.001 (0.006)	0.046 (0.009) ***	-	-	-0.017 (0.004) ***	-	-	-	-	-
$Max \sim C1 + C2 + Acc + pAg$	1.417 (0.014) ***	0.000 (0.005)	0.036 (0.009) ***	0.034 (0.004) ***	-0.008 (0.004) *	-	-	-	-	-	-
$Max \sim C1 + C2 + YFU$	1.404 (0.014) ***	0.002 (0.005)	0.049 (0.009) ***	-	-	-	-0.008 (0.003) *	-	-	-	-
$Max \sim CI + C2 + YFU + PD$	1.409 (0.014) ***	-0.001 (0.006)	0.045 (0.009) ***	-	-	-0.017 (0.004) ***	-0.007 (0.003) *	-	-	-	-
$Max \sim C1 + C2 + YFU + Acc$	1.415 (0.014) ***	0.001 (0.005)	0.036 (0.009) ***	0.036 (0.004) ***	-	-	-0.004 (0.003)	-	-	-	-
$Max \sim ISL1 + C1 + C2$	1.428 (0.014) ***	0.004 (0.005)	0.050 (0.009) ***	-	-	-	-	-0.102 (0.016) ***	-	-	-
$Max \sim ISL1 + C1 + C2 + Acc$	1.438 (0.014)	0.002 (0.005)	0.037 (0.009)	0.036 (0.004)	-	-	-	-0.103 (0.016)	-	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
	***		***	***				***			
$Max \sim ISL1 + C1 + C2 + pAg$	1.433 (0.014) ***	0.000 (0.006)	0.048 (0.009) ***	-	-0.016 (0.004) ***	-	-	-0.099 (0.016) ***	-	-	-
$Max \sim ISL1 + C1 + C2 + PD$	1.433 (0.014) ***	0.000 (0.006)	0.046 (0.009) ***	-	-	-0.017 (0.004) ***	-	-0.102 (0.016) ***	-	-	-
$Max \sim ISL1 + C1 + C2 + Acc + pAg$	1.440 (0.014) ***	0.000 (0.005)	0.036 (0.009) ***	0.034 (0.004) ***	-0.007 (0.004)	-	-	-0.101 (0.016) ***	-	-	-
$Max \sim ISL1 + C1 + C2 + YFU$	1.429 (0.014) ***	0.003 (0.005)	0.05 (0.009) ***	-	-	-	-0.007 (0.003) *	-0.101 (0.016) ***	-	-	-
$Max \sim ISL1 + C1 + C2 + YFU + PD$	1.433 (0.014) ***	-0.001 (0.006)	0.046 (0.009) ***	-	-	-0.017 (0.004) ***	-0.006 (0.003) *	-0.101 (0.016) ***	-	-	-
$Max \sim ISL1 + C1 + C2 + YFU + Acc$	1.438 (0.014) ***	0.001 (0.005)	0.037 (0.009) ***	0.036 (0.004) ***	-	-	-0.003 (0.003)	-0.102 (0.016) ***	-	-	-
$Max \sim ISL2 + C1 + C2$	1.429 (0.014) ***	0.004 (0.005)	0.050 (0.009) ***	-	-	-	-	-	-0.094 (0.015) ***	-	-
$Max \sim ISL2 + C1 + C2 + Acc$	1.439 (0.014) ***	0.002 (0.005)	0.037 (0.009) ***	0.037 (0.004) ***	-	-	-	-	-0.096 (0.015) ***	-	-
$Max \sim ISL2 + C1 + C2 + pAg$	1.433 (0.014) ***	0.001 (0.006)	0.048 (0.009) ***	-	-0.016 (0.004) ***	-	-	-	-0.092 (0.015) ***	-	-
$Max \sim ISL2 + C1 + C2 + PD$	1.434 (0.014) ***	0.000 (0.006)	0.046 (0.009) ***	-	-	-0.018 (0.004) ***	-	-	-0.095 (0.015) ***	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
$Max \sim ISL2 + C1 + C2 + Acc + pAg$	1.440 (0.014) ***	0.000 (0.005)	0.036 (0.009) ***	0.035 (0.004) ***	-0.007 (0.004)	-	-	-	-0.095 (0.015) ***	-	-
$Max \sim ISL2 + C1 + C2 + YFU$	1.430 (0.014) ***	0.003 (0.005)	0.050 (0.009) ***	-	-	-	-0.007 (0.003) *	-	-0.094 (0.015) ***	-	-
$Max \sim ISL2 + C1 + C2 + YFU + PD$	1.434 (0.014) ***	-0.001 (0.006)	0.045 (0.009) ***	-	-	-0.017 (0.004) ***	-0.006 (0.003) *	-	-0.095 (0.015) ***	-	-
$Max \sim ISL2 + C1 + C2 + YFU + Acc$	1.439 (0.014) ***	0.001 (0.005)	0.037 (0.009) ***	0.036 (0.004) ***	-	-	-0.003 (0.003)	-	-0.096 (0.015) ***	-	-
$Max \sim ISL3 + C1 + C2$	1.445 (0.014) ***	0.003 (0.005)	0.049 (0.009) ***	-	-	-	-	-	-	-0.148 (0.017) ***	-
$Max \sim ISL3 + C1 + C2 + Acc$	1.454 (0.014) ***	0.001 (0.005)	0.035 (0.009) ***	0.037 (0.004) ***	-	-	-	-	-	-0.149 (0.017) ***	-
$Max \sim ISL3 + C1 + C2 + pAg$	1.449 (0.014) ***	0.000 (0.006)	0.047 (0.009) ***	-	-0.015 (0.004) ***	-	-	-	-	-0.144 (0.017) ***	-
$Max \sim ISL3 + C1 + C2 + PD$	1.449 (0.014) ***	-0.001 (0.006)	0.044 (0.009) ***	-	-	-0.018 (0.004) ***	-	-	-	-0.148 (0.017) ***	-
$Max \sim ISL3 + C1 + C2 + Acc + pAg$	1.455 (0.014) ***	-0.001 (0.005)	0.035 (0.009) ***	0.035 (0.004) ***	-0.006 (0.004)	-	-	-	-	-0.147 (0.017) ***	-
$Max \sim ISL3 + C1 + C2 + YFU$	1.446 (0.014) ***	0.002 (0.005)	0.048 (0.009) ***	-	-	-	-0.007 (0.003) *	-	-	-0.147 (0.017) ***	-
$Max \sim ISL3 + C1 + C2 + YFU + PD$	1.450 (0.014)	-0.002 (0.006)	0.044 (0.009)	-	-	-0.017 (0.004)	-0.006 (0.003)	-	-	-0.148 (0.017)	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
	***		***			***	*			***	
$Max \sim ISL3 + C1 + C2 + YFU + Acc$	1.454 (0.014) ***	0.000 (0.005)	0.035 (0.009) ***	0.036 (0.004) ***	-	-	-0.003 (0.003)	-	-	-0.148 (0.017) ***	-
$Max \sim ISL4 + C1 + C2$	1.457 (0.014) ***	0.002 (0.005)	0.049 (0.008) ***	-	-	-	-	-	-	-	-0.181 (0.017) ***
$Max \sim ISL4 + C1 + C2 + Acc$	1.466 (0.014) ***	0.000 (0.005)	0.035 (0.009) ***	0.037 (0.004) ***	-	-	-	-	-	-	-0.183 (0.017) ***
$Max \sim ISL4 + C1 + C2 + pAg$	1.461 (0.014) ***	-0.001 (0.005)	0.047 (0.008) ***	-	-0.015 (0.004) ***	-	-	-	-	-	-0.177 (0.017) ***
$Max \sim ISL4 + C1 + C2 + PD$	1.461 (0.014) ***	-0.002 (0.006)	0.044 (0.009) ***	-	-	-0.018 (0.004) ***	-	-	-	-	-0.181 (0.017) ***
$Max \sim ISL4 + C1 + C2 + Acc + pAg$	1.467 (0.014) ***	-0.001 (0.005)	0.035 (0.009) ***	0.035 (0.004) ***	-0.006 (0.004)	-	-	-	-	-	-0.181 (0.017) ***
$Max \sim ISL4 + C1 + C2 + YFU$	1.458 (0.014) ***	0.001 (0.005)	0.049 (0.008) ***	-	-	-	-0.007 (0.003) *	-	-	-	-0.180 (0.017) ***
$Max \sim ISL4 + C1 + C2 + YFU + PD$	1.462 (0.014) ***	-0.003 (0.006)	0.044 (0.009) ***	-	-	-0.017 (0.004) ***	-0.006 (0.003) *	-	-	-	-0.181 (0.017) ***
$Max \sim ISL4 + C1 + C2 + YFU + Acc$	1.466 (0.014) ***	0.000 (0.005)	0.035 (0.009) ***	0.036 (0.004) ***	-	-	-0.003 (0.003)	-	-	-	-0.183 (0.017) ***
Skew ~ $C1 + C2$	0.536 (0.005)	-0.042 (0.002)	-0.018 (0.004)	-	-	-	-	-	-	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
	*** 0.536	*** -0.042	*** -0.016	-0.004							
Skew ~ $CI + C2 + Acc$	(0.005) ***	(0.002)	(0.004) ***	(0.002) *	-	-	-	-	-	-	-
Skew ~ $C1 + C2 + pAg$	0.535 (0.005) ***	-0.041 (0.002) ***	-0.017 (0.004) ***	-	0.003 (0.002)	-	-	-	-	-	-
Skew ~ $C1 + C2 + PD$	0.536 (0.005) ***	-0.041 (0.002) ***	-0.017 (0.004) ***	-	-	0.002 (0.002)	-	-	-	-	-
$Skew \sim C1 + C2 + Acc + pAg$	0.536 (0.005) ***	-0.041 (0.002) ***	-0.016 (0.004) ***	-0.004 (0.002)	0.001 (0.002)	-	-	-	-	-	-
$Skew \sim C1 + C2 + YFU$	0.536 (0.005) ***	-0.042 (0.002) ***	-0.018 (0.004) ***	-	-	-	0.003 (0.001)	-	-	-	-
$Skew \sim C1 + C2 + YFU + PD$	0.536 (0.005) ***	-0.041 (0.002) ***	-0.017 (0.004) ***	-	-	0.002 (0.002)	0.003 (0.001)	-	-	-	-
$Skew \sim C1 + C2 + YFU + Acc$	0.536 (0.005) ***	-0.041 (0.002) ***	-0.016 (0.004) ***	-0.004 (0.002)	-	-	0.002 (0.001)	-	-	-	-
Skew ~ $ISL1 + C1 + C2$	0.550 (0.005) ***	-0.042 (0.002) ***	-0.017 (0.004) ***	-	-	-	-	-0.074 (0.007) ***	-	-	-
$Skew \sim ISL1 + C1 + C2 + Acc$	0.550 (0.005) ***	-0.042 (0.002) ***	-0.015 (0.004) ***	-0.005 (0.002) **	-	-	-	-0.075 (0.007) ***	-	-	-
Skew ~ $ISL1 + C1 + C2 + pAg$	0.550 (0.005) ***	-0.041 (0.002) ***	-0.016 (0.004) ***	-	0.004 (0.002) *	-	-	-0.075 (0.007) ***	-	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
Skew ~ $ISL1 + C1 + C2 + PD$	0.550 (0.005) ***	-0.041 (0.002) ***	-0.016 (0.004) ***	-	-	0.003 (0.002)	-	-0.074 (0.007) ***	-	-	-
$Skew \sim ISL1 + C1 + C2 + Acc + pAg$	0.550 (0.005) ***	-0.041 (0.002) ***	-0.014 (0.004) ***	-0.004 (0.002) *	0.003 (0.002)	-	-	-0.075 (0.007) ***	-	-	-
Skew ~ $ISL1 + C1 + C2 + YFU$	0.550 (0.005) ***	-0.042 (0.002) ***	-0.016 (0.004) ***	-	-	-	0.003 (0.001) *	-0.074 (0.007) ***	-	-	-
$Skew \sim ISL1 + C1 + C2 + YFU + PD$	0.550 (0.005) ***	-0.041 (0.002) ***	-0.015 (0.004) ***	-	-	0.002 (0.002)	0.003 (0.001) *	-0.075 (0.007) ***	-	-	-
$Skew \sim ISL1 + C1 + C2 + YFU + Acc$	0.550 (0.005) ***	-0.042 (0.002) ***	-0.014 (0.004) ***	-0.004 (0.002) *	-	-	0.003 (0.001)	-0.075 (0.007) ***	-	-	-
Skew ~ $ISL2 + C1 + C2$	0.556 (0.005) ***	-0.042 (0.002) ***	-0.016 (0.004) ***	-	-	-	-	-	-0.085 (0.007) ***	-	-
Skew ~ $ISL2 + C1 + C2 + Acc$	0.556 (0.005) ***	-0.041 (0.002) ***	-0.013 (0.004) ***	-0.005 (0.002) **	-	-	-	-	-0.086 (0.007) ***	-	-
Skew ~ $ISL2 + C1 + C2 + pAg$	0.556 (0.005) ***	-0.041 (0.002) ***	-0.015 (0.004) ***	-	0.004 (0.002) *	-	-	-	-0.086 (0.007) ***	-	-
$Skew \sim ISL2 + C1 + C2 + PD$	0.556 (0.005) ***	-0.041 (0.002) ***	-0.015 (0.004) ***	-	-	0.002 (0.002)	-	-	-0.085 (0.007) ***	-	-
$Skew \sim ISL2 + C1 + C2 + Acc + pAg$	0.556 (0.005) ***	-0.041 (0.002) ***	-0.013 (0.004) ***	-0.004 (0.002) *	0.003 (0.002)	-	-	-	-0.086 (0.007) ***	-	-
$Skew \sim ISL2 + C1 + C2 + YFU$	0.556 (0.005)	-0.041 (0.002)	-0.015 (0.004)	-	-	-	0.003 (0.001)	-	-0.085 (0.007)	-	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
	***	***	***				*		***		
$Skew \sim ISL2 + C1 + C2 + YFU + PD$	0.556 (0.005) ***	-0.041 (0.002) ***	-0.014 (0.004) ***	-	-	0.002 (0.002)	0.003 (0.001) *	-	-0.085 (0.007) ***	-	-
$Skew \sim ISL2 + C1 + C2 + YFU + Acc$	0.556 (0.005) ***	-0.041 (0.002) ***	-0.013 (0.004) ***	-0.004 (0.002) *	-	-	0.003 (0.001)	-	-0.086 (0.007) ***	-	-
Skew ~ $ISL3 + C1 + C2$	0.556 (0.005) ***	-0.043 (0.002) ***	-0.016 (0.004) ***	-	-	-	-	-	-	-0.081 (0.007) ***	-
Skew ~ $ISL3 + C1 + C2 + Acc$	0.557 (0.005) ***	-0.042 (0.002) ***	-0.014 (0.004) ***	-0.005 (0.002) **	-	-	-	-	-	-0.081 (0.007) ***	-
Skew ~ $ISL3 + C1 + C2 + pAg$	0.556 (0.005) ***	-0.042 (0.002) ***	-0.015 (0.004) ***	-	0.004 (0.002) *	-	-	-	-	-0.082 (0.007) ***	-
Skew ~ $ISL3 + C1 + C2 + PD$	0.557 (0.005) ***	-0.042 (0.002) ***	-0.015 (0.004) ***	-	-	0.002 (0.002)	-	-	-	-0.081 (0.007) ***	-
$Skew \sim ISL3 + C1 + C2 + Acc + pAg$	0.557 (0.005) ***	-0.042 (0.002) ***	-0.013 (0.004) ***	-0.004 (0.002) *	0.003 (0.002)	-	-	-	-	-0.082 (0.007) ***	-
Skew ~ $ISL3 + C1 + C2 + YFU$	0.557 (0.005) ***	-0.042 (0.002) ***	-0.016 (0.004) ***	-	-	-	0.003 (0.001) *	-	-	-0.081 (0.007) ***	-
$Skew \sim ISL3 + C1 + C2 + YFU + PD$	0.557 (0.005) ***	-0.042 (0.002) ***	-0.015 (0.004) ***	-	-	0.002 (0.002)	0.003 (0.001) *	-	-	-0.081 (0.007) ***	-
$Skew \sim ISL3 + C1 + C2 + YFU + Acc$	0.557 (0.005) ***	-0.042 (0.002) ***	-0.014 (0.004) ***	-0.004 (0.002) *	-	-	0.003 (0.001)	-	-	-0.081 (0.007) ***	-

Model	Int	Comp1	Comp2	Acc	pAg	PD	YFU	ISL1	ISL2	ISL3	ISL4
Skew ~ $ISL4 + C1 + C2$	0.561 (0.005) ***	-0.043 (0.002) ***	-0.015 (0.004) ***	-	-	-	-	-	-	-	-0.090 (0.007) ***
Skew ~ $ISL4 + C1 + C2 + Acc$	0.561 (0.005) ***	-0.043 (0.002) ***	-0.013 (0.004) ***	-0.005 (0.002) **	-	-	-	-	-	-	-0.090 (0.007) ***
Skew ~ $ISL4 + C1 + C2 + pAg$	0.560 (0.005) ***	-0.042 (0.002) ***	-0.014 (0.004) ***	-	0.004 (0.002) *	-	-	-	-	-	-0.091 (0.007) ***
Skew ~ $ISL4 + C1 + C2 + PD$	0.561 (0.005) ***	-0.042 (0.002) ***	-0.014 (0.004) ***	-	-	0.003 (0.002)	-	-	-	-	-0.090 (0.007) ***
$Skew \sim ISL4 + C1 + C2 + Acc + pAg$	0.561 (0.005) ***	-0.042 (0.002) ***	-0.012 (0.004) ***	-0.004 (0.002) *	0.003 (0.002)	-	-	-	-	-	-0.091 (0.007) ***
$Skew \sim ISL4 + C1 + C2 + YFU$	0.561 (0.005) ***	-0.043 (0.002) ***	-0.015 (0.004) ***	-	-	-	0.003 (0.001) *	-	-	-	-0.090 (0.007) ***
$Skew \sim ISL4 + C1 + C2 + YFU + PD$	0.561 (0.005) ***	-0.042 (0.002) ***	-0.014 (0.004) ***	-	-	0.002 (0.002)	0.003 (0.001) *	-	-	-	-0.090 (0.007) ***
$Skew \sim ISL4 + C1 + C2 + YFU + Acc$	0.561 (0.005) ***	-0.042 (0.002) ***	-0.013 (0.004) ***	-0.004 (0.002) *	-	-	0.003 (0.001)	-	-	-	-0.091 (0.007) ***

Table S5. Comparison of models explaining the observed distribution of median (Med), maximum body mass (Max) and body mass skewness (Skew). df = degree of freedom; AIC = Bayesian Information Criterion; ΔAIC = difference in AIC with the best model; ω = AIC weight; R^2_{sp} = variance explained by the fixed factor and the spatial autocorrelation combined; R^2_{nsp} = variance explained by the fixed factors only. C1-2 = First two principal components explaining ~ 65% of the variance of environmental variables and order richness; Acc = Accessibility; pAg = Percentage of agricultural areas; PD = Population density; YFU = Year from first land use; ISL = factor to classify cells as islands (ISL1 = <25,000 km²; ISL2 = <100,000 km²; ISL3 = <500,000 km²; ISL4 = <750,000,000 km²).

Model	df	AIC	ΔΑΙΟ	ω	R ² _{sp}	R ² nsp
$Med \sim ISL4 + C1 + C2 \\ + YFU + Acc$	8	-8618.110	0	0.507	0.941	0.086
$Med \sim C1 + C2 + YFU \\ + Acc$	7	-8617.18	0.930	0.318	0.941	0.082
$ Med \sim ISL2 + C1 + C2 \\ + YFU + Acc $	8	-8615.985	2.125	0.175	0.941	0.083
$Med \sim ISL4 + C1 + C2 \\ + Acc + pAg$	8	-8600.773	17.338	0	0.941	0.091
$Med \sim ISL4 + C1 + C2 \\ + YFU + PD$	8	-8600.248	17.862	0	0.941	0.067
$Med \sim C1 + C2 + Acc \\ + pAg$	7	-8599.620	18.49	0	0.941	0.086
$Med \sim C1 + C2 + YFU \\ + PD$	7	-8598.933	19.177	0	0.941	0.062
$Med \sim ISL2 + C1 + C2 \\ + Acc + pAg$	8	-8598.585	19.525	0	0.941	0.087
$ Med \sim ISL2 + C1 + C2 \\ + YFU + PD $	8	-8597.887	20.223	0	0.941	0.063
$Med \sim ISL4 + C1 + C2 \\ + Acc$	7	-8597.266	20.844	0	0.941	0.096
$Med \sim C1 + C2 + Acc$	6	-8596.533	21.577	0	0.941	0.091
$ Med \sim ISL2 + C1 + C2 \\ + Acc $	7	-8595.284	22.826	0	0.941	0.093
$Med \sim ISL4 + C1 + C2$ + YFU	7	-8579.959	38.151	0	0.941	0.050
$Med \sim C1 + C2 + YFU$	6	-8578.349	39.761	0	0.941	0.046
$Med \sim ISL2 + C1 + C2 \\ + YFU$	7	-8577.507	40.603	0	0.941	0.047
$Med \sim ISL4 + C1 + C2 \\ + PD$	7	-8574.507	43.603	0	0.941	0.074
$Med \sim C1 + C2 + PD$	6	-8573.374	44.736	0	0.941	0.068
$Med \sim ISL2 + C1 + C2 \\ + PD$	7	-8572.285	45.825	0	0.941	0.069
$Med \sim ISL4 + C1 + C2 \\ + pAg$	7	-8564.277	53.833	0	0.941	0.045
$Med \sim C1 + C2 + pAg$	6	-8562.156	55.954	0	0.941	0.040
$Med \sim ISL2 + C1 + C2 \\ + pAg$	7	-8561.669	56.441	0	0.941	0.041
$Med \sim ISL4 + C1 + C2$	6	-8549.328	68.782	0	0.941	0.049

Model	df	AIC	ΔΑΙC	ω	R ² _{sp}	R ² nsp
$Med \sim C1 + C2$	5	-8547.890	70.220	0	0.940	0.045
$Med \sim ISL2 + C1 + C2$	6	-8547.025	71.086	0	0.941	0.045
$Med \sim ISL1 + C1 + C2 + YFU + Acc$	8	-8544.498	73.612	0	0.941	0.082
$Med \sim ISL3 + C1 + C2 \\ + YFU + Acc$	8	-8531.636	86.474	0	0.941	0.082
$Med \sim ISL1 + C1 + C2 \\ + Acc$	7	-8528.870	89.240	0	0.941	0.092
$Med \sim ISL1 + C1 + C2 \\ + Acc + pAg$	8	-8528.141	89.969	0	0.941	0.086
$Med \sim ISL1 + C1 + C2 \\ + YFU + PD$	8	-8521.097	97.013	0	0.941	0.062
$Med \sim ISL3 + C1 + C2 \\ + Acc$	7	-8516.395	101.715	0	0.941	0.092
$Med \sim ISL3 + C1 + C2 \\ + Acc + pAg$	8	-8515.409	102.701	0	0.941	0.086
$ Med \sim ISL1 + C1 + C2 \\ + YFU $	7	-8509.765	108.345	0	0.941	0.046
$Med \sim ISL3 + C1 + C2 \\ + YFU + PD$	8	-8508.534	109.576	0	0.941	0.062
$Med \sim ISL1 + C1 + C2 \\ + PD$	7	-8499.817	118.294	0	0.941	0.068
$ Med \sim ISL3 + C1 + C2 \\ + YFU $	7	-8497.585	120.525	0	0.941	0.046
$Med \sim ISL1 + C1 + C2 \\ + pAg$	7	-8492.118	125.992	0	0.941	0.040
$Med \sim ISL3 + C1 + C2 \\ + PD$	7	-8487.728	130.382	0	0.941	0.068
$Med \sim ISL1 + C1 + C2$	6	-8485.137	132.973	0	0.941	0.045
$Med \sim ISL3 + C1 + C2$	7	-8479.736	138.374	0	0.941	0.040
+ pAg Med ~ ISL3 + C1 + C2	6	-8473.497	144.613	0	0.940	0.045
$Max \sim ISL4 + C1 + C2 + Acc + pAg$	8	-17345.600	0	0.534	0.925	0.215
$Max \sim ISL4 + C1 + C2 \\ + Acc$	7	-17344.267	1.333	0.274	0.925	0.218
$Max \sim ISL4 + C1 + C2 + YFU + Acc$	8	-17343.558	2.042	0.192	0.925	0.216
$Max \sim ISL2 + C1 + C2 + Acc + pAg$	8	-17318.801	26.798	0	0.925	0.173
$Max \sim ISL2 + C1 + C2 \\ + Acc$	7	-17317.031	28.569	0	0.925	0.176
$\begin{array}{l} Max \sim ISL2 + C1 + C2 \\ + YFU + Acc \end{array}$	8	-17316.498	29.102	0	0.925	0.173
$Max \sim ISL4 + C1 + C2 \\ + YFU + PD$	8	-17297.926	47.674	0	0.925	0.141
$\begin{array}{l} Max \sim ISL4 + C1 + C2 \\ + PD \end{array}$	7	-17296.300	49.300	0	0.925	0.138
$Max \sim ISL4 + C1 + C2 \\ + pAg$	7	-17290.083	55.517	0	0.925	0.124
$Max \sim ISL4 + C1 + C2$	7	-17279.673	65.927	0	0.925	0.113

Model	df	AIC	ΔΑΙC	ω	R ² _{sp}	R ² nsp
+ YFU		-	-		~ r ,	#*
$Max \sim ISL4 + C1 + C2$	6	-17276.315	69.285	0	0.925	0.105
$Max \sim C1 + C2 + Acc + pAg$	7	-17273.736	71.864	0	0.924	0.169
$Max \sim ISL2 + C1 + C2 \\ + YFU + PD$	8	-17272.731	72.869	0	0.924	0.102
$Max \sim ISL2 + C1 + C2 \\ + PD$	7	-17270.891	74.709	0	0.924	0.099
$Max \sim C1 + C2 + Acc$	6	-17270.281	75.319	0	0.924	0.173
$Max \sim C1 + C2 + YFU + Acc$	7	-17269.977	75.623	0	0.924	0.169
$Max \sim ISL2 + C1 + C2 \\ + pAg$	7	-17265.672	79.928	0	0.924	0.086
$Max \sim ISL2 + C1 + C2 \\ + YFU$	7	-17254.945	90.654	0	0.924	0.073
$Max \sim ISL2 + C1 + C2$	6	-17251.359	94.241	0	0.924	0.065
$Max \sim C1 + C2 + YFU + PD$	7	-17228.718	116.882	0	0.924	0.097
$Max \sim C1 + C2 + PD$	6	-17226.614	118.986	0	0.924	0.093
$Max \sim Cl + C2 + pAg$	6	-17224.494	121.106	0	0.924	0.083
$Max \sim C1 + C2 + YFU$	6	-17211.407	134.193	0	0.924	0.069
$Max \sim C1 + C2$	5	-17207.533	138.067	0	0.924	0.061
$Max \sim ISL3 + C1 + C2 + Acc + pAg$	8	-17021.418	324.182	0	0.925	0.170
$Max \sim ISL3 + C1 + C2 \\ + Acc$	7	-17020.947	324.653	0	0.925	0.172
$Max \sim ISL3 + C1 + C2 + YFU + Acc$	8	-17020.167	325.433	0	0.925	0.169
$Max \sim ISL1 + C1 + C2 + Acc + pAg$	8	-16985.009	360.591	0	0.925	0.171
$Max \sim ISL1 + C1 + C2 \\ + Acc$	7	-16983.771	361.828	0	0.925	0.173
$ Max \sim ISL1 + C1 + C2 \\ + YFU + Acc $	8	-16982.969	362.631	0	0.925	0.170
$Max \sim ISL3 + C1 + C2 + YFU + PD$	8	-16956.275	389.325	0	0.925	0.102
$Max \sim ISL3 + C1 + C2 + PD$	7	-16953.886	391.714	0	0.925	0.099
$Max \sim ISL3 + C1 + C2 + pAg$	7	-16949.386	396.214	0	0.925	0.087
$\begin{array}{l} Max \sim ISL3 + C1 + C2 \\ + YFU \end{array}$	7	-16938.615	406.985	0	0.925	0.075
$Max \sim ISL3 + C1 + C2$	6	-16934.575	411.025	0	0.925	0.068
$Max \sim ISL1 + C1 + C2 + YFU + PD$	8	-16919.692	425.908	0	0.924	0.098
$Max \sim ISL1 + C1 + C2 \\ + PD$	7	-16917.378	428.222	0	0.924	0.095
$Max \sim ISL1 + C1 + C2 \\ + pAg$	7	-16914.724	430.876	0	0.924	0.083
$Max \sim ISL1 + C1 + C2 \\ + YFU$	7	-16902.199	443.401	0	0.924	0.070

Model	Дf	ATC	AATC	6	D ²	D ²
Max = ISU1 + C1 + C2	ar	AIU 16909 267	AAT 222	<u></u>	K-sp	K -nsp
$max \sim ISLI + CI + C2$	U	-10098.20/	447.000	U	0.924	0.002
Skew ~ $ISIA + C1 +$						
C2 + YFU + Acc	8	-39087.951	0	0.519	0.906	0.317
$Skew \sim ISL4 + C1 + C1$	8	-39087 406	0.545	0 395	0.906	0.31/
C2 + Acc + pAg	0	57007.400	0.545	0.375	0.700	0.514
Skew ~ $ISL2 + CI + C2 + YFU + Acc$	8	-39083.217	4.734	0.049	0.906	0.311
$Skew \sim ISL2 + C1 + C2 + Acc + pAg$	8	-39082.434	5.517	0.033	0.906	0.307
Skew ~ $ISL4 + C1 + C2 + Acc$	7	-39078.419	9.532	0.004	0.906	0.314
Skew ~ $ISL2 + C1 + C2 + Acc$	7	-39073.899	14.052	0	0.906	0.308
$Skew \sim ISL4 + C1 + C2 + YFU + PD$	8	-39064.685	23.266	0	0.906	0.309
$Skew \sim ISL2 + C1 + C2 + YFU + PD$	8	-39058.958	28.993	0	0.906	0.301
$Skew \sim ISL4 + C1 + C2 + pAg$	7	-39055.768	32.183	0	0.906	0.303
Skew ~ $ISL4 + C1 + C2 + PD$	7	-39050.714	37.237	0	0.906	0.304
Skew ~ $ISL2 + C1 + C2 + pAg$	7	-39049.689	38.262	0	0.906	0.294
$Skew \sim ISL4 + C1 + C2 + YFU$	7	-39049.130	38.821	0	0.906	0.305
Skew ~ $C1 + C2 + YFU + Acc$	7	-39049.013	38.938	0	0.905	0.282
Skew ~ $C1 + C2 + Acc$ + pAg	7	-39046.266	41.685	0	0.905	0.279
Skew ~ $ISL2 + C1 + C2 + PD$	7	-39045.189	42.762	0	0.906	0.296
Skew ~ $ISL2 + C1 + C2 + YFU$	7	-39043.351	44.600	0	0.906	0.297
$Skew \sim C1 + C2 + Acc$	6	-39040.131	47.820	0	0.905	0.28
<i>Skew</i> ~ <i>ISL4</i> + <i>C1</i> + <i>C2</i>	6	-39031.509	56.442	0	0.906	0.298
<i>Skew</i> ~ <i>ISL</i> 2 + <i>C</i> 1 + <i>C</i> 2	6	-39025.984	61.967	0	0.906	0.29
Skew ~ $C1 + C2 + YFU + PD$	7	-39024.177	63.774	0	0.906	0.273
Skew ~ $C1 + C2 + PD$	6	-39010.843	77.108	0	0.906	0.269
$Skew \sim C1 + C2 + pAg$	6	-39010.802	77.149	0	0.906	0.267
Skew ~ $C1 + C2 + YFU$	6	-39007.509	80.442	0	0.906	0.270
Skew ~ $C1 + C2$	5	-38990.505	97.446	0	0.906	0.265
$Skew \sim ISL3 + C1 + C2 + YFU + Acc$	8	-37855.236	1232.715	0	0.906	0.305
$Skew \sim ISL3 + C1 + C2 + Acc + pAg$	8	-37854.66	1233.291	0	0.906	0.301
Skew ~ $ISL3 + C1 + C2 + Acc$	7	-37854.146	1233.805	0	0.906	0.303

Model	df	AIC	ΔΑΙC	ω	R ² sp	R ² nsp
Skew ~ $ISL3 + C1 + C2 + pAg$	7	-37852.593	1235.358	0	0.906	0.288
$Skew \sim ISL3 + C1 + C2 + YFU$	7	-37852.026	1235.925	0	0.906	0.291
$Skew \sim ISL3 + C1 + C2 + YFU + PD$	8	-37851.322	1236.629	0	0.906	0.295
$Skew \sim ISL3 + C1 + C2$	6	-37849.351	1238.600	0	0.906	0.284
$Skew \sim ISL3 + C1 + C2 + PD$	7	-37849.168	1238.783	0	0.906	0.290
$Skew \sim ISL1 + C1 + C2 + YFU + Acc$	8	-37842.186	1245.765	0	0.906	0.299
$Skew \sim ISL1 + C1 + C2 + Acc$	7	-37841.148	1246.803	0	0.906	0.297
$Skew \sim ISL1 + C1 + C2 + Acc + pAg$	8	-37841.019	1246.932	0	0.906	0.296
$Skew \sim ISL1 + C1 + C2 + YFU$	7	-37839.01	1248.941	0	0.906	0.286
$Skew \sim ISL1 + C1 + C2 + pAg$	7	-37838.729	1249.222	0	0.906	0.283
$Skew \sim ISL1 + C1 + C2 + YFU + PD$	8	-37838.575	1249.376	0	0.906	0.290
$Skew \sim ISL1 + C1 + C2 + PD$	7	-37836.534	1251.417	0	0.906	0.285
<i>Skew</i> ~ <i>ISL1</i> + <i>C1</i> + <i>C2</i>	6	-37836.409	1251.542	0	0.906	0.279