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ABSTRACT

Background: MSVAR is a software package for simulating and analysing microsatellite
evolution. It assumes that all mutations lead to alleles exactly one repeat longer or shorter than
the original (the stepwise mutation model) but many actual mutations lead to size changes of
several repeats.

Question: How reliable are the conclusions of microsatellite analyses using the software
MSVAR if we assume realistic violations of its stepwise mutation assumption?

Mathematical methods: Simulate microsatellite evolution using forward simulations, under
various demographic scenarios. Use different degrees of departure from the pure stepwise
mutation model. Then analyse the results using a GLM approach.

Key assumption: Regardless of starting conditions, microsatellite size attains equilibrium or
near equilibrium conditions after 5N, generations (where N, is effective population size).

Results: Absolute values of past and present N,, the magnitude of N, change or the time
frame of the demographic changes from the output of MSVAR cannot be trusted in
the presence of realistic deviations from the assumed (stepwise) mutation model. Ancestral
population sizes will be severely overestimated while current populations will be underestimated
but to a lesser extent. The extent of bias produced by a given degree of model deviation is only
slightly influenced by demography. The relative differences in N, between populations of the
same species will therefore generally be reliable.

Keywords: demographic changes, effective population size, microsatellites, N,,
stepwise mutation model.
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INTRODUCTION

Reconstructing the historical and ongoing processes of genetic diversification is beneficial
to studies of theoretical and applied conservation biology (Pertoldi e al, 2007). However, the
complex dynamics of the late Pleistocene/Holocene make it difficult to disentangle the
genetic consequences of natural climatic and habitat changes from those of human-
mediated habitat alterations and direct exploitation of natural populations. Recent progress
in biostatistics and mathematics has increased our potential to infer population genetic
processes via the development of theoretical models. For example, these models can be used
to estimate historical and current genetic effective population size (N,), the degree of gen-
etic isolation and rates of gene flow, past population expansions or declines, and cryptic
bottlenecks. Microsatellites are an important source of information for various questions
regarding population demography. Microsatellite loci have been increasingly used in
population genetics studies, because they generally are neutral and highly polymorphic,
which makes them suitable for estimating N,. Their main advantages are their high
mutation rates that increase the amount of information that can be gained by each micro-
satellite and the relatively low cost and ease of analysing individuals once the markers are
developed (Morin er al, 2009; Haas! and Payseur, 2011).

Although many models have been developed to describe the mutation process of micro-
satellites (Bhargava and Fuentes, 2010), most programs that analyse microsatellite data use the
Stepwise Mutation Model [SMM (Ohta and Kimura, 1973)]. This model assumes that all
mutations result in either one more or one less repeat than the original, and that insertions
and deletions are equally likely The SMM is computationally simple and provides
straightforward expectations for the distribution of allele sizes. However, it has become
increasingly clear that the vast majority of microsatellites do not evolve according to this
model (eg. Dieringer and Schistterer, 2003; Ellegreen, 2004; Seyert et al,, 2008). The frequency of deviations
appears high but also very variable, and estimated values for humans and zebrafish have
ranged from 0.10 to 0.63 and from 0.05 to 0.75 respectively (Ellegreen, 2000, 2004; Huang er al., 2002).
Insertions or deletions of a single repeat are generally the most common, but larger
insertions or deletions make up a significant proportion of mutations. Furthermore,
mutations are often not symmetric, with either deletions or insertions being the most
common in different taxa or microsatellites (Bhargava and Fuentes, 2010).

The focus of this paper is MSVAR, a widely used program that uses microsatellites
to detect changes in population size in an individual population, based on a single con-
temporary dataset (Beaumont, 1999; Storz and Beaumont, 2002). Using several assumptions, MSVAR
detects whether N, has remained constant, expanded or declined over time, and estimates
both the original and current N, and the time when N, began to change. The two most
important assumptions are the mutation model, which is assumed to be the SMM, and the
absence of population genetic substructure (i.e. the sampled individuals are assumed to
come from a closed panmictic population).

Published studies using MSVAR suggest an apparent bias. Although the program has
been used approximately 200 times in published studies, the analysis of human demography
from the initial program description (Beaumont, 1999) is one of only a few studies indicating
a population expansion; almost all other studies infer population declines (Girod e af, 2011,
Table $1). This might be partially explained by the fact that the program has mainly been
used for species in which population declines are expected, but the results still appear
suspicious.
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Several studies have recently shown that, when MSVAR is used, genetically structured
populations can create a false signal of population decline (Nielsen and Beaumont, 2009; Chikhi e af,
2010; Peter er af, 2010). However, many studies that have used MSVAR have been conducted
on organisms where the sampled individuals do appear to consist of closed panmictic
populations, and population declines are still consistently found (eg. Johnson er al, 2009: Pruett et al,
2010). A reanalysis of other studies by Chikhi er al. (2010) also showed that population
structure cannot be the sole explanation for these inferred bottlenecks. This suggests
misspecification of the mutational model may be the source of additional bias.

Mutations of a size greater than one single repeat can create a distribution of allele sizes
that is similar to the allelic distribution observed in a declining population. The combined
effects of drift and stepping stone mutations under a constant population size will generate
a more or less bell-shaped distribution of allele sizes. Deviation from such a bell shape will
therefore mean either a deviation from a constant population size or from stepping stone
mutations. A population decline can create deviations when alleles are randomly lost from
the population, while similar patterns can appear if alleles are not lost but rather never
occurred, ie. if some alleles were created by non-stepping stone mutations. Frequent
deviations from SMM could therefore lead to false inferences of population declines
{Chikhi er al., 2010). However, the magnitude of this error is very difficult to determine without
simulations. Unlike errors caused by wrongly assuming a closed panmictic population,
which may be specific to programs assuming closed panmictic populations, errors caused by
the application of inappropriate mutation models would also be relevant to many other
analyses, such as IMa (Hey and Nielsen, 2007, Hey, 2010) or some implementations of ABC
approaches (e.g. Peter et al, 2010).

IMa can also be used to analyse sequence data, and simulations have investigated the
importance of model violations regarding such use (Strasburg and Rieseberg, 2008). Violations were
found to be relatively important when IMa was used to analyse data that were simulated
with a more complex and realistic model than the one applied by IMa. This may be
comparable to simulation of microsatellites under a more complex model than SMM.
The effects of microsatellite mutation model violations were recently analysed as part
of a general study of the power of MSVAR (Girod e «l, 2011), but the authors only analysed
two specific degrees of deviations from the stepwise mutation rate under a single model
and thus could not determine what magnitude of errors MSVAR can handle without
problems. Furthermore, the authors only investigated whether using the wrong model
resulted in strong evidence of a population decline; they did not estimate the magnitude
of the error.

In the present study, we analysed how MSVAR behaved in the presence of deviations
from the SMM, to help understand the importance of mutational model violations in
creating the apparent bias in reported population size changes. We investigated both the
frequency and distribution of mutations larger than one. The goal of this study was
to estimate the degree of deviation from the SMM that was required to generate results
indicating a false population decline, as well as to examine the extent to which useful
information (e.g. which populations are largest or which populations have experienced the
largest population decline) could be extracted from the analysis, even in cases where model
violations led to unreliable estimated values.
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MATERIALS AND METHODS

Microsatellite simulations

We simulated data using four different unbounded mutation models using custom R scripts
(see evolutionary-ecology.com/data/2763Appendix.pdf): (1) Unbiased Mixed Mutations
(UMM), (2) Biased Mixed Mutations (BMM), (3) Unbiased Geometric Mutations (UGM),
and (4) Biased Geometric Mutations (BGM). UMM is given by:

X.withrate | —pu
X, + 1 with rate Yau x (1 — NonSMM)
Xi1=X;— 1 withrate Yo x (1 = NonSMM) (1)
X;+ D with rate Y2y x NonSMM
X;— D with rate 2y x NonSMM

where X;,, is the length of a microsatellite for individual X at generation i+ 1, u is the
mutation rate, NonSMM is the proportion of mutations not following the SMM model,
and D is a discrete uniform distribution with a lower bound of 2 and an upper bound of 10.
BMM is similar to UMM, except that it is asymmetrical and assumes that most stepwise
mutations are insertions and most multi-step mutations are deletions. It is given by:

X;withrate 1 — u
X;+ 1 with rate ¥6u x (1 — NonSMM)
X;.1=X,— 1 with rate Yu % (1 - NonSMM) 2)
X;+ D with rate Y64 x NonSMM
X, - D with rate %u x NonSMM

UMM and BMM both assume that mutations that are not stepwise are equally likely to
be of any length in a specified range. The other two models assume that the lengths of
insertions or deletions follow a geometric distribution. Mutations of increasing size are
therefore progressively more rare, but there is no upper limit to the length of a single
mutation. BGM and UGM are similar, but BGM assumes that insertions are more likely
than deletions. UGM is given by:

X;withrate 1 — u
X,.;=X;+ G with rate Y2 (3)
X;— G with rate Yau
and BGM by:
X,withrate ] —u
X:11=X:+ G with rate Y64 (4)

X;— G with rate Y
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where G is a geometric distribution with a probability of I — NonSMM. UGM is the model
generally used by programs such as SIMCOAL to model non-stepwise mutations (Laval and
Excoffier, 2004). This model assumes that the majority of non-stepwise mutations are small,
which most likely will mean that the effect of each non-stepwise mutation is relatively small.
UMM has to our knowledge not previously been used but was chosen to highlight that the
effect of a given NonSMM is heavily dependent on the mutation model. UGM and BGM
assume that the vast majority of all multi-step mutations consist of only two repeats.
UMM and BMM on the other hand assume that there is no correlation between mutation
frequency and mutation size for multi-step mutations. Empirical studies (e, Seyfert et al, 2008)
generally find that while such a correlation does exist, the proportion of mutations larger
than two repeats is usually larger than expected, under the UGM and BGM. UMM/BMM
and UGM/BGM can therefore be seen as the worst and best case scenario respectively for
the effects of a given frequency of non-stepwise mutations. The contraction bias chosen in
BMM and BGM with a five-fold difference in deletion and insertion rates is within
the observed frequencies [and identical to the estimates from 229 mutations in dimorphic
microsatellites in Caenorhabditis elegans in Seyfert et al. (2008)], although higher than many
reported values (eg. Ellegreen, 2000; Xu et al., 2000).

For all four models, we analysed 19 values of NonSMM, ranging from 0.00 to 0.90
in steps of 0.05. UMM is identical to UGM when NonSMM is equal to 0, but both sets
were analysed, since the codes used to simulate the UMM were slightly different from the
codes used to simulate UGM and we wished to ensure that this fact did not influence our
results,

For all 76 combinations (4 models each with 19 values of NonSMM) we investigated
37 different evolutionary scenarios, resulting in a total of 2886 different combinations. For
all combinations, we performed a single set of simulations. Scenarios consisted of different
ancestral population sizes and either constant population sizes or mild to moderate
population increases or declines (evolutionary-ecology.com/data/2763A ppendix.pdf,
Table S1); all population size changes were simulated as exponential. In all cases, we
simulated 20 unlinked microsatellites. After each simulation, 50 individuals were selected
with replacements from the simulated population to be analysed with MSVAR. These
sample sizes were larger than the usual sample sizes of empirical studies using MSVAR,
which have a median of 30 individuals and 11.5 microsatellites (Girod e ai. 2011), but the
amount of data in genetic studies increases over time and future studies will likely use more
microsatellites than this median. Furthermore, we wished to simulate larger datasets
to increase the information available and thereby decrease the importance of prior
distributions.

We simulated a haploid population of twice the mentioned diploid size; all references to
population size in this paper will refer to the diploid population size. Simulations were
conducted in R v.2.12.1 (R Development Core Team, 2010) using forward simulations with custom
codes (evolutionary-ecology.com/data/2763Appendix.pdf). Simulations were started with
a population that was monomorphic for a single allele in all microsatellites, and were run for
a length of five times the number of N, generations before any changes in population
size were simulated (10 times the simulated haploid generation size). The vast majority
of coalescence events should have occurred during this period, but coalescence is a
stochastic process and we acknowledge that our approach may be slightly biased if not all
coalescence occurred during the simulated generations; in this case, our approach could
generate a signal of slight population increase.
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In all cases, we assumed a constant mutation rate of 107, without variation in the
mutation rate between microsatellites, although such variation would likely be found in
natural populations. MSVAR v.1.3 (Storz and Beaumont, 2002) incorporates variation in the
microsatellite mutation rate among loci into its analysis, thus we did not believe that the
inclusion of such variation would influence our results substantially. We chose not to
include this variation because we wanted to reduce the risk of chains getting stuck in local
optima, which would slow down convergence time. However, it should be noted that while
MSVAR can handle variation in mutation rate between loci, it (like most other programs)
cannot handle the interaction between mutation rate and N,, which recently has been
suggested to occur as a consequence of higher mutation rate in heterozygote sites (Amos er af,
2008}, If such interaction has a detectable effect, it will provide an additional source of error
for MSVAR, which we have not taken into account in this analysis. We chose a relatively
high mutation rate since higher mutation rates generally increase the information available
for each marker and thereby reduce the effects of prior distributions leading to a more
precise estimate of the effects of model violations.

MSVAR analysis

We used MSVAR v.1.3 in all analyses; for a description of the algorithm, see Storz and
Beaumont 002). MSVAR v.1.3 is substantially different from the software originally
described by Beaumont (1999) and, while the overall conclusions of the results obtained in
this investigation will likely be transferable, caution is advised when applying results from
these simulations to interpretations of results from the original MSVAR program. We used
relatively flat priors for ancestral population size (¥,), current population size (N,), and
time since decline/expansion (T,) (u =3, ¢ =3, =0, v =1), but highly informative priors for
mutation rate (u=-3, ¢ =0.1, #=0, 7= 0.1) (for definitions of these parameters, see Storz and Beaumont,
2002). The starting conditions for all parameters were the means of their prior distribution,
Our results assume that the mutation rate is known virtually without error, which is unlikely
to be true. However, as pointed out by Girod et al. (2011), very high precision in the priors
of mutation rate is required to generate precise posterior distributions of the natural
parameters, which we will focus on in the analysis. More plausible wider priors for mutation
rate would generate an extra source of variation, but this is not expected to change the
underlying dynamics analysed in this paper.

Since convergence can be very slow for MCMC algorithms, previous simulation studies
of MSVAR (Chikhi et af., 2010; Girod et al, 2011) have used lower numbers of simulations and longer
chains to ensure data precision. Due to the much higher number of simulations in our study,
such long chains were not possible and we only ran the chains for 3.75 x 10® generations
with samples every 250,000 generations and the first third discarded as burn-in. We
acknowledge that this means that not all chains reached their equilibrium and, therefore,
we incorporated parameters related to convergence of the MCMC chains into our analysis
(see next section).

The MSVAR analyses and data simulations in R were run on a total of sixty-four 3.3
GHz Power7 CPU cores, each with 128 GB memory under a AIX 6.1 operating system at
CSCAA (Centre for Scientific Computing in Aarhus, Aarhus University).
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Test for convergence

We were aware that the chains were too short to expect that all had converged. In fact, the
results obtained by Girod er 4/ (2011) suggest that convergence to a stable and well-mixed
condition may never be reached when there are severe model violations. All else being equal,
the deviations from the true values are likely to decrease over time and, therefore, analyses
of chains that have not fully reached their equilibrium will still provide information about
the underlying parameters, as long as the priors are sufficiently wide to be effectively
uninformative and the chain has run sufficiently long to be effectively independent of the
starting conditions.

Since we did not expect full convergence, we needed estimates of the convergence level.
We estimated the absolute value of the Geweke test statistics (Geweke, 1992) and the inverse of
effective sample size (hereafter referred to as Geweke and ESS™) using coda (Plummer er ai,
2006). The Geweke test statistic is a comparison between the mean of the first and the last
part of the chain with well-defined characteristics for large well-mixed chains, but like
any metric based on means it is sensitive to extreme values. ESS is a measure related to
autocorrelation between samples in the chain and is low for poorly mixed or non-converged
chains. We chose the inverse of estimated sample size because changes in ESS are only
likely to be important for small ESS, while it will be unimportant whether an ESS is
500 or 1000. The Geweke test failed in a few simulations, and in these cases we set the
Geweke test statistic as the largest number produced in any of the analyses. ESSr™ was
defined as:

- (ESSI\Ll + ESSN, )1
o

2

and Geweker as the mean of GewekeN, and GewekeN,.

Choice of parameters

We focused on estimates of N,, N,, T,, and the exponential growth rate (r), which was
the ratio (N./N,). The analysis by Girod er al (2011) suggested that MSVAR provides
more precise estimates of the scaled parameters (e.g. the product of population size and
mutation rate as well as T,/(2N,)). Their analyses were, however, based on simulations
with a far less informative prior of mutation rate than the one we used, meaning that the
precision of their estimates of the non-scaled parameters were far lower than the ones in
our analysis.

Using the package TeachingDemos (Snow, 2010), we calculated the mode (with all values
rounded to the first decimal) for each of these four parameters, hereafter referred to as
ModeN,, ModeN,, ModeT,, and Moder, as well as the lengths of the 70% highest
probability density, hereafter referred to as HPD-length N, HPD-lengthN,, HPD-lengthT,,
and HPD-lengthr. We also estimated whether the true values of every estimate were
included in the 70% HPD (scored as 1 if the HPD contained the true value and 0 otherwise),
which will be referred to as PrecisionN,, PrecisionN,, PrecisionT,, and Precisionr,

T, is meaningless as a parameter unless NV, and N, are different from each other (meaning
that r # 0). Therefore, all cases in which the 70% HPD of r spanned 0 were removed from
further analyses of 7.
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Comparisons of the effects of various values of NonSMM

All analyses were performed within a generalized linear modelling (GLM) framework using
the command glm() in R v.2.11.1, with effect sizes, standard errors, and P-values estimated
using Wald’s tests (R Development Core Team, 2010). The first set of analyses were an attempt to
define the proportion of non-stepwise mutations required to generate estimates that were
systematically different from the parameters without model violations, as well as to define
the magnitude of the deviation observed with each NonSMM. Each NonSMM in UMM
and BMM was compared to UMM with a NonSMM of 0, and each NonSMM in UGM
and BGM was compared to UGM with a NonSMM of 0.

All analyses included five parameters: NonSMM (treated as an indicator variable, i.e.
coded as 0 for NonSMM of zero and 1 otherwise), ESS™, and Geweke as well as the
interactions between ESS™ or Geweke and the true values of the studied parameter (N,, N,,
T,, or r). The last four parameters were included to incorporate the potential effect of
non-convergence, but we only focused on the effects of NonSMM. Mode and HPD-length
were analysed with family Gaussian (equivalent to a standard ANCOVA). Precision
was analysed using family Quasi-binomial and link logit (similar to a standard logistic
regression, but incorporating that the variance can be smaller or higher than expected under
a binomial distribution). It should be noted that Wald’s test is not meaningful for the
Quasi-binomial link functions, in cases where the parameter in question (in this case,
Precision) is 0 or 1 for all cases in one group, since there is no single ML optimum in these
cases. We consider these tests as statistically significant since the Wald’s tests are significant
in cases with smaller differences between groups, although standard errors are not reported
in these cases.

For modes, we reported the raw effect. For HPD-length, we reported results standardized
by dividing the difference by the mean HPD-length for UMM or UGM with a NonSMM
of 0. For precision, we reported the estimated differences as percentages calculated with
ESS™ and Geweke equal to the average Geweke and ESS™ values in the appropriate
analysis.

Test of relative performance of MSVAR

A second set of analyses focused on whether the relative values are trustworthy, regardless
of whether the results were biased or not — in other words, whether the differences between
estimated parameters are the same as the differences between the true values regardless of
whether they are both wrong. These analyses were performed for all NonSMM values in all
models. They included estimated Mode with five parameters (the true values, ESS™,
Geweke, as well as the interactions between ESS™ or Geweke and the true values) using
family Gaussian, and focused on the slope of the true value in the analysis of Mode. In this
analysis, an estimated slope of 1 thus means that the difference between estimated values is
on average the same as the difference between the true values, whereas an estimated slope of
0 means that the estimated values do not contain any information of the relative size
of the true values. Frequent non-convergence would, if unaddressed, lead to low slopes
(near 0), but through simulations we have shown that our incorporation of the additional
parameters removes this bias, although non-convergence does produce noise in the
results, and therefore the individual slope values should be interpreted with caution
(evolutionary-ecology.com/data/2763Appendix. pdf).
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Multifactorial analysis

In a third set of analyses, we attempted to determine the full effect of model violations,
including information on whether the effects of NonSMM or biased mutation interacted
with the effects of population size or population history. These analyses combined all runs
of UMM and BMM and all runs of UGM and BGM. Parameters were progressively
removed from the model until only significant parameters (P < 0.05) remained, although
main effects were kept if interactions or higher-order effects were significant. The initial
model for r and T, included 18 parameters: four related to chain convergence (ESS™,
Geweke, and the interactions between them and the parameter in question), two directly
related to model violations (NonSMM and NonSMM?), four main effects (Bias
[an indicator variable equal to 0 for UMM and UGM and 1 for BMM and BGM], True r,
True T,, and the interaction between True r and True 7,), and eight interactions between
NonSMM or NonSMM? and the four main effects. The initial model of N, and N, included
21 parameters, the 18 mentioned already as well as True N, or True N, and the interactions
with NonSMM and NonSMM?®. We used the same families and links as in the initial
analyses. Here, we report all values but only discuss the effects of parameters directly related
to the effects of NonSMM or Bias.

RESULTS
Comparisons of the effects of various NonSMM values

Modes

MedeN, increased with increasing NonSMM (Fig. 1). For UMM/BMM, the increase was
concave, with Mode/, essentially constant for NonSMM values higher than 0.5. This was
significant for all comparisons using BMM and all NonSMMs higher than 0.05 using
UMM. For UGM/BGM, the increase was almost linear with increasing NonSMM and
significant for NonSMMs higher than 0.2.

ModeN, decreased slightly with increasing NonSMM (Fig. 1), but the effect was
generally non-significant, suggesting minor systematic effects of NonSMM on ModeN,.

Since the effect on ModeN, was minor, the effect on Moder was mimicking the effect
on MedeA,. Little systematic variation was found in 7}, although a small increase in 7, was
observed for high NonSMM.

Precision

The effects of increasing NonSMM on Precision¥,, PrecisionN,, Precisionr, and
Precision7, were very similar, although the pattern was less evident for PrecisionT,, since
values were low, even with a NonSMM of 0 (Fig. 2).

Precision decreased very fast for UMM/BMM and was highly significant for all non-zero
NonSMM values. Increasing NonSMM above 0.1 had little effect, as nearly all precision
was already lost. For UGM and BGM, the loss of precision was slower and all precision
was not lost until NonSMM was around 0.5.

HPD-length

An increase in NonSMM led to a decrease in HPD-length (Fig. 3). For HPD-lengthN,, the
decrease was relatively slow and almost linear for all models. With UMM/BMM, decreases
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Fig. 1. Effect of NonSMM on modes. Pairwise comparisons of modes between different degrees of
NonSMM in both biased and unbiased models, with unbiased models having a NonSMM of 0. Solid
symbols denote differences significantly different from 0. Circles are unbiased and triangles are biased.
The estimates as well as standard errors are given. Higher values along the y-axis mean that the
parameter in question reached higher values at lower stepwise and/or biased models. This and all
other figures were constructed using functions from the package Hmisc (Harrell, 2010).
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represent a greater loss of precision.
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with a NonSMM of 0. Solid symbols denote differences significantly different from 0. Circles are
unbiased and triangles are biased. The estimates as well as standard errors are given. Higher values
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in N, r, and T, were almost instantanecous and occurred when NonSMM changed from
0 to 0.1; no additional changes occurred with higher NonSMMs. For UGM/BGM, the
change was slower and almost linear with increasing NonSMM, up to 0.45. In all cases,
HPD-lengths for higher NonSMM values were around half of the HPD-length with a
NonSMM of 0.

Test of relative success of MSVAR

Modes in UMM

The results for UMM (Fig. 4) were almost identical to the results for BMM (evolutionary-
ecology.com/data/2763 Appendix.pdf, Table S3). For all four parameters in both models, the
slope at NonSMM of 0 was close to the theoretically expected value of 1, suggesting that
either chain convergence was not a problem or that our incorporation of ESS™ and Geweke
enabled us reliably to remove the problem. The slopes for both N, and N, were high and
significant for all values of NonSMM. For N, the slope was independent of NonSMM.
For N,, the slope tended to decrease with increasing NonSMM, down to around 0.5 for very
high NonSMM values. The slope for r, although generally positive and significant in some
cases, was very low for NonSMM values above 0.05. The slope for 7, dropped immediately,
suggesting that no or very limited information was available on the relative 7T, of different
populations, even at a NonSMM of 0.035.

Modes in UGM

The results for UGM (Fig. 5) were very similar to the results for BGM (evolutionary-
ecology.com/data/2763Appendix.pdf, Fig. $4). For all four parameters in both models, the
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slope at NonSMM of 0 was close to the theoretical expected value of 1, suggesting that
either chain convergence was not a problem or that our incorporation of ESS™ and Geweke
enabled us to reliably remove the problem. For N,, there was a very limited decrease in the
slope for NonSMM values between 0 and 0.85, and a slope close to zero for a NonSMM of
0.90. The slope of N, was essentjally independent of NonSMM. For r, the slope decreased
with increasing NonSMM and although the slope remained consistently positive until a
NonSMM reached a value of 0.9, it was non-significant for all NonSMM values higher
than 0.45. The slope dropped drastically for T; it remained positive for NonSMM up to
0.45 for UGM and 0.35 for BGM, and was significantly positive for NonSMM of 0.05 and
0.25 for UGM and 0.10 and 0.20 for BGM.

Multifactorial analyses

Because the results for Modes (Table 1) as well as Precision and HPD-length (evolutionary-
ecology.com/data/2763Appendix.pdf, Tables S2 and S3) were highly complex, only the
results relating to modes will be discussed further. ModeN, was unaffected by contraction
bias but highly affected by NonSMM. The effect of NonSMM was, however, highly
complex and non-linear and included several interactions with the true N, as well
as demographic history of the population. One of the most important effects on these
interactions is that ModeN, was more highly influenced by NonSMM when true N,
was small.

ModeN, was not as influenced by NonSMM as ModeN, was, but the effects were
equally complex. The most important effect was that ModeN, is underestimated in
small but not in large populations as a consequence of NonSMM. Furthermore, there was
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a very small but significant effect for UGM/BGM, suggesting that contraction bias led to
minor underestimations of N,.

Moder was strongly (although non-linearly) influenced by NonSMM. As shown in
Figs. 4 and 5, the multidimensional results show that the importance of True r for
Moder decreases with increasing NonSMM. For ModeT,, the results were less complex.
Interestingly for UBM/BMM, the model suggests that ModeT,, was independent of the true
T,. For UGM/BGM, the results were comparable to the results for r with the impertance of
True T, for ModeT, decreasing with increasing NonSMM.,

DISCUSSION

Importance of results

The frequently reported bias in mutational direction (e.g. Bhargava and Fuentes, 2010) was found to
have a very small effect, since UGM was almost identical to BGM, and UMM almost
identical to BMM. This suggests that this bias is of limited importance for analyses
of microsatellite data. There was, however, a large difference between UGM/BGM and
UMM/BMM, with the effects of a given NonSMM consistently smaller for UGM/BGM
than for UMM/BMM. This was likely because the average indel size was smaller for
UGM/BGM than for UMM/BMM.

To determine whether the results suggest that model violations are a major problem,
it is vital to understand how large of a deviation from a pure SMM can generally be
expected, Two mutation matrices derived from Daphnia or roundworms showed values
of around 0.70 (Seyfert e al, 2008) and both showed large systematic errors in all analysed
parameters. Other studies have reported lower but highly variable NonSMM values.
For humans, a NonSMM of 0.10-0.15 is often found (eg. Ellegreen, 2000; Xu er af, 2000, although
values as high as 0.63 have also been reported (Huang er af, 2002, while estimates for
zebrafish range from 0.05 to (.75 (for a full discussion, see Ellegreen, 2004). The effect of the size of
a given NonSMM may therefore lie somewhere between the reported UGM/BGM and
UMM/BMM models.

Moder, and probably ModeN,, will be systematically biased in almost all cases, whereas
systematic bias in ModeN, may or may not occur in individual studies, Precision will likely
be affected in analyses of empirical data and based on our results it is unlikely that reported
values of 70% HPD contain the true values. Information on the absolute values could
theoretically be retrieved if precise knowledge of the NonSMM values could be obtained.
However, since this parameter appears to be highly variable between and within species, it
may be necessary to restrict comparisons to those between populations analysed with the
same microsatellites.

Fortunately, even though absolute information cannot safely be recovered from MSVAR
data, relative data can be recovered for N, and N,, whereas even relative information
about T, and probably also r may be very difficult to retrieve. Care should be taken,
because the reduction in HPD-length with increasing NonSMM means that non-
overlapping HPDs may not always be taken as evidence for different parameter
values. Furthermore, the highly complex interactions between modes and effective
population size and demography may make even relative comparisons dangerous in some
cases, and it may therefore be safer to interpret the output of MSVAR as ordinal rather than
interval data.



wx% (TO0) PE°0 zxx2 (90°0) 92°0 IWINSUON : ©F 9ni] : 9ndf, $N =2z (TOO)ET'O WIAISUON "L ani] :uani]
w4 (E0°0) ZE0 +4+ (£0°0) 91°0 "L anif :fanip x2x (T0'0) €10 L0 TT°0 "L NI taanay
22 (LO°0) ZT'0- «§0°0) ¥0°0 INJANSUON 1%L sniy, $'N «{40°0) 11°0 INTNISUON - ana],
«(#0°0) 01°0 «(20°0) $O°0— "L enif «(10°0) £0°0— +(70°0) 80°0— FACLET
SN »(91°0) 0F'0 JANAISUON -1 21T, 222 (LT0) 16°0— wxe (TTO)OL'O- JANSUON 14 an1],

#+x (60°0) L6°0— xxx (61°0) IV T~ WIASUON . e, =x (LT°0) LE'O 2% (17°0) §§°0 NNSUON : JM],
w4 (90°0) 6L°0— w45 (LO°0) 1L70- £ ML, +4x (P0°0) S1°0— «90°0) £0°0 4an4y,
#+ (PL'0) LE'O SN WINSUON :serg SN SN WASUON :seig
wex (L0°0) 9T°0— $'N seig $N SN seig
SN SN JNINSUON :°N oni], #ex (LT'0) 1670~ TN JAINSUON - °N aniL

2xx (01°0) §§°0 xxx (LO°0) PS'0 NTASUON :°N and, «(5T°0) S0°0 zxx (60°0) 6L°0— ININSUON 1 °N/ aTIL
sxx (S0°0) 81K zxx (€0°0) 1T°1 N enuay sxx (50°0) yTI 2% (S0°0) 0s'1 PN andy,
xxx (8T0) TE'T «1T°0) 80°0— JANASUON wxx (€L°0) S6°T #xx (62°0) 9E°€— JNNSUON,
wex (6€°0) ET°E— wex (LT0) 10°T— WINSUON x+ (89°0) LOT xxx (LE'0) SS9 WNSUON
"S'N +(200°0) #00°0— N 9TLLL : 9)aMman) SN §'N N NIL I OmoD)

TN ae(P00°0) €£10°0 aYaman $N N Maman

wx (81°0) 00T s (91°0) 10°L NI, SSH wx (BED S0P s (1D L1F1- N 9L, SSH
w22 (TPO) PL g~ sk (8T°0) ¥T' €~ S84 s (TL'E) L9°TT s (£9°9) 9T 6% S84
w4 (91°0) 85°0— w#+ ([1°0) 6¥°0— 1daoraug wxx (F1°0) 780~ wxx (91°0) 90" 1— deoraug
OLIJOUWIOID) POXIIN NOPOIAI OlI2U030) PaXIA “AJRPOJAl

L 104 N “*A SOPOW JO SIUBUIWIRS( T aqey,



UBOLIUTIG K1LIR[D 10 S[qEI 9Y) WO} PIAOTUDI AIR MOI {383 U0 SISK[BUE 1) JO AUB UI [2pouI |

P[OQ Ul UMOYs IR NS B WOIJ SUONBIAID JO 103}J2 2y} 0] paje[al siajatreied
BULJ 341 Ul POPN[OUL JOU SIJOWERIR "UIALT BIB SIOLI2 PIRPUERIS 1I9Y] ST [|oM SB

SPIBLUISI 24 |, "unJi yoes ul Jajeweled yora 10j sanjea ay) 218 §,X Y} pue 9]q®1 A1) U UBALS $921S S1BUINS2 1ajawered o) 21w s B ay) araym ** * t IxPe 4+ Ixle + ydeorauy = £ e
'S9[qBLIBA [[B JO UONBUILUOD IBaul] B 0} [Bnba s1 (*NopolA '§'9) ajqeLiea £ 3y Jey) sownsse [SPOW 3y | "WMOYS 21E SIOIId PIBpPUR)S I} [[am SE sa1ewss juiod ayf 270y

"G00 <d o 1000 > dex 100°0>d > 10°0 45 100 >d >S0°0 «

SN A C-O.cv LEO EEWEOZ.“JH STLLY, 2 andf, SN SN EE@EOZ ”s,.m SN g and]

‘SN «L070) 9070 PN -1 SN e (£0°0) 8170 FL ML gy,

$N wex (E1°0) 760~ INJNSUON = 9], TN SN NJASUON : . ani],

w3 (T0°0) 80°0 w44 (LO°0) 570 4 AN, «(€0°0) ¥0°0 +{£0°0) ¥0°0 "L anuy,
TN TN INJNSUON : seig = (91°0) €€°0 » (O1°0) €€°0 WINSUON :selg

SN = (€0°0) 90°0— selg x (80°0) 0Z'0— x (80°0) 070~ setg

ux (8€°0) 0T TN JNSUON L ani|, wex (82°0) 69°L wxx (82°0) 69°L JAJASUON @ and],
wxs (8E70) §9'1— {L0°0) 90°0 INJASUON 1% [ anif xax (97°0) 10°T— sun (97°0) 10°T— NTNSUON : 4 an1],
s (80°0) 05°0 «F00) 100~ renig, w0 (L0°0) LE0 w2 (L0°0) LED £an1]
wnn (TLOV6L'T—  wun (PTO)EOT- JNINSUON wxs (LE0) 86E vz (LE'0) 86'E JNISUON
wex (ELO) LT'F +(9T°0) 0T 0 NJANSUON wxx (SE'0) 08°S— wxx (SE0) 08'S— INNSUON
SN sk (€T°0) TS - -S8d s (€T 1) 1670~ s (TF0) 1076~ S84

++ (S00°0) TO0 w54 ($00°0) £0°0 oYaman) SN s (S0070) $0°0 S ELETS)
w54 (LT0)HET w4k (80°0) TEY daaisyug «(E1°0) 81°0— sk (60°0) #5°0— 1dedrayu]
U_H—OEODO va_—z n.h u—ucz omb@EOuu _uuxﬁz L@—-QE




876 Faurby and Pertoldi

The conclusions of this study seem to contradict the conclusions reached in a previous
study, in which MSVAR was investigated and found to be robust to model-violations (Girod
er al., 2011). These differences stem partially from different data interpretations and partially
from the choice of parameters. Of ten populations that were stimulated according to a
UGM with a NonSMM of 0.22, Girod et al. (2011) found false population declines in two of
five populations simulated under constant population size, while true population increases
(simulated with an r of 2) were found in two of three populations (five were simulated,
two did not converge). A false positive rate of 40% in detecting population declines may
arguably be highly problematic. Furthermore, a NonSMM of 0.22 is lower than expected in
many cases. Finally, their results are based on the UGM being appropriate, while we suspect
that larger indels are substantially more common in true populations than expected under
this model, since the relative frequency of indels of 3-5 repeats is generally higher than
expected under the UGM (eg Ellegreen, 2000; Xu er al, 2000; Seyfert er af, 2008). Our simulations
show that MSVAR is more vulnerable to a given NonSMM when the average size of a
NonSMM mutation is larger and the use of UGM may therefore underestimate the effects
of model violations.

Potential sources of error

A full estimation of the importance of priors for the results would require repeating the
entire analysis with several separate sets of priors, but this is not realistically possible, due to
the already very high computer demands. However, the importance of such effects is
suggested by our analyses, as these effects could be partly responsible for the complex
interactions between NonSMM and population sizes or demographic parameters. For
instance, Mode/, is relatively unaffected by true N, for very high NonSMM values, likely
because the upper values for N, are partly dictated by the priors (Figs. 4 and 5). This
suggests that the estimated values in the tables and figures (the exact change in parameter
value for a given NonSMM) are only directly comparable with other studies if they have the
same priors as well as the same signal strength (requiring the same sample and microsatellite
number). The priors used in this study are wider than those used in many empirical studies.
For empirical studies using the same priors for N, and N, but assuming a lower standard
error in the prior, the bias in estimation of r may be slightly less (although the estimates will
instead be more highly influenced by the priors).

Incomplete chain convergence is a potential source of error in this study, but we believe
that we removed most of the effect by including parameters of chain convergence in the
analysis, which is supported by our simulations on the behaviour and our treatment of non-
convergence (evolutionary-ecology.com/data/2763Appendix.pdf). If there was a systematic
residual effect caused by poorer chain convergence at higher NonSMM, as indicated in the
study by Girod et al 011, our analyses of the skewness posterior distributions
(evolutionary-ecology.com/data/2763Appendix.pdf) would be expected to show decreasing
symmetry with increasing NonSMM but the opposite result was found. It should be
noted that our analyses cannot give precise information on whether one or more of our
parameters was consistently influenced by poor chain convergence. This is why we have not
discussed the absolute performance of MSVAR but only how the performance of MSVAR
was influenced by variation in NonSMM.
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Implications for previous and future studies

We believe that these simulations have important implications both for the interpretation
of previous studies and for the design of future studies. One important aspect is that
estimates of T,, which have previously been discussed in detail by many authors, including
ourselves (Pertoldi et al, 2001; Randi er al, 2003; Faurby er al, 20103, actually have little meaning and
readers of papers using MSVAR should not focus too much on these estimates. Significantly
different N, and N, estimates, which have been consistently interpreted as evidence for
bottlenecks or population declines (Pertoldi et af, 2001; Randi et al., 2003; Faurby er al,, 2010), should
similarly be regarded with extreme caution since such differences could very likely be caused
by model violations. Readers of MSVAR analyses should instead focus on relative size
differences between populations (eg. Randi er af, 2003; Faurby e al, 2010; Pruett er al, 2010), although
caution should be taken if genetic sub-structure is expected to be more pronounced in some
populations than in others as such sub-structure may also influence the results of MSVAR
(Nielsen and Beaumont, 2009; Chikhi et af, 2010; Peter et al., 2010).

Girod et al. 2011y concluded that MSVAR was a very powerful method for identifying
bottlenecks, suggesting that researchers who are interested in finding bottlenecks should
use the program. However, we disagree with this notion since our analyses indicate that
evidence for bottlenecks is likely found even when no bottlenecks have occurred. We
believe that the MSVAR program should only be selected for use by researchers interested
in contemporary or historical differences in population sizes between populations, and
that researchers interested in bottlenecks per se need to use programs that incorporate
non-stepwise mutations in their models.
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