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Habitat suitability estimated with probability of occurrence in species distribution 
models (SDMs) is used in conservation to identify geographic areas that are most 
likely to harbor individuals of interest. In theory, probability of occurrence is coupled 
with individual fitness so that individuals have higher fitness at the centre of their 
species environmental niche than at the edges, which we here define as ‘fitness-centre’ 
hypothesis. However, such relationship is uncertain and has been rarely tested across 
multiple species. Here, we quantified the relationship between coarse-scale probability 
of occurrence projected with SDMs and individual fitness in 66 tree species native of 
North America. We used 1) field data of individuals’ growth rate (height and diameter 
standardized by age) available from the United States Forest Inventory Analysis plots; 
and 2) common garden data collected from 23 studies reporting individual growth 
rate, survival, height and diameter of individuals originated from different provenances 
in United States and Canada. We show ‘fitness–centre’ relationships are rare, with only 
12% and 11% of cases showing a significant positive correlation for field and common 
garden data, respectively. Furthermore, we found the ‘fitness–centre’ relationship is not 
affected by the precision of the SDMs and it does not depend upon dispersal ability 
and climatic breath of the species. Thus, although the ‘fitness–centre’ relationship is 
supported by theory, it does not hold true in nearly any species. Because individual 
fitness plays a relevant role in buffering local extinction and range contraction follow-
ing climatic changes and biotic invasions, our results encourage conservationists not to 
assume the ‘fitness–centre’ relationship when modelling species distribution.

Keywords: centre–periphery, ecological niche model, individual performance, 
intraspecific variability, meta-analysis, transplant experiment

Introduction

Probability of occurrence estimated with species distribution models (SDMs) is widely 
used in large-scale conservation assessments to predict range shifts and local extinction 
rates in response to global environmental changes (Peterson et al. 2002, Thuiller et al. 
2005, Pacifici  et  al. 2015). To improve reliability of SDMs’ projections, recent 
advances integrate and combine various processes such as eco-evolutionary dynamics 
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(Cotto et al. 2017), dispersal limitation (Engler et al. 2012) 
and local adaptation (Benito Garzón et al. 2019, Peterson et al. 
2019). However, it is still debated to what extent coarse-scale 
probability of occurrence reflects underlying ecological and 
demographic processes related to the concept of environ-
mental niche (Thuiller  et  al. 2014, Wittmann  et  al. 2016, 
Pironon et al. 2018).

In theory, probability of occurrence (sometimes referred as 
‘habitat suitability’ in SDMs) is expected to reflect the set of abi-
otic conditions that maximize the physiological optimum of a 
species (Guisan et al. 2017). Although SDMs are not designed 
to model individual fitness or local abundance, areas with 
higher probability of occurrence in geographic space indicate, 
in principle, the locations where a species can better establish 
and maintain populations. Nevertheless, such assumption in 
SDMs relies on a hypothetical absence of biotic interactions, 
dispersal limitation and evolutionary change (Pearson and 
Dawson 2003). In addition, micro-habitat variation unrelated 
to the coarse scale climate modeled by SDMs could greatly 
affect species distribution and fitness (Potter et al. 2013).

Understanding relationships between species occurrence 
and ecological processes is key to evaluate conservation 
strategies based upon SDMs under present-day and future 
climate change scenarios (Franklin 2010). To this aim, the 
reliability of species occurrence obtained from SDMs and 
other niche modeling approaches can be evaluated testing the 
‘centre–periphery’ hypothesis, which states that demographic 
performance and genetic variation is highest at the centre of 
the preferred environmental niche and decreases toward the 
edges (Pironon et al. 2017).

While previous studies focusing on the ‘centre–periph-
ery’ hypothesis are focusing on local abundance (i.e. the 
‘abundant–centre’ hypothesis; Box 1) (Dallas  et  al. 2017, 
Santini  et  al. 2019, Osorio-Olvera  et  al. 2020), a less fre-
quently tested assumption in the niche modeling literature 
is that individuals have higher fitness at the centre of their 
species environmental niche than at the edges within their 

native range, which hereafter we refer to as the ‘fitness–cen-
tre’ hypothesis (Box 1). Because such hypothesis reflects the 
fundamental ecological theory surrounding the concept of 
ecological niche (Pulliam 2000), some has proposed that pos-
itive coupling can be expected between individual fitness and 
modeled probability of occurrence in SDMs (Thuiller et al. 
2010, Wittmann et al. 2016, Mammola et al. 2019). Indeed, 
probability of occurrence is commonly used as an ecological 
niche indicator approximating Grinnellian niche (namely the 
niche component defined by non-interactive abiotic environ-
mental variables) alongside other metrics of niche-centroid 
distance (Santini  et  al. 2019, Osorio-Olvera  et  al. 2020). 
Nevertheless, there are multiple reasons to expect weak sup-
port of ‘fitness–centre’ hypothesis in SDMs, both biological 
and methodological.

First, the fitness–centre hypothesis assumes that specimens 
have the highest fitness under the environmental conditions 
where they occur more frequently, and that their maximum 
fitness is reached where these conditions are met. However, 
due to dispersal limitation and historical factors, species may 
not be in equilibrium with current environmental condi-
tions, that is, species distribution may be still responding to 
last glacial period (ca 115–12 ka) and anthropogenic land-
use changes and fragmentation (Svenning and Skov 2004, 
Svenning and Sandel 2013, Wagner et al. 2015). In addition, 
there is mounting evidence that individuals of a population 
might not be locally adapted nor express higher individual fit-
ness in local rather than non-local conditions (Svenning and 
Sandel 2013, De Frenne et al. 2014, Midolo and Wellstein 
2020). Such factors do not just disregard the assumption 
behind the fitness–centre hypothesis, but also bias the esti-
mation of the environmental niche in SDMs (Pearson and 
Dawson 2003).

Second, individual fitness, like local abundance 
(Pironon et al. 2015, Santini et al. 2019), may not linearly 
increase from the centre to the edge of the environmental 
niche. Instead, performance curves can have abrupt declines 

Box 1. List of hypotheses mentioned in this study

Centre–periphery hypothesis (CPH). Biogeographical paradigm stating that genetic variation and demographic performance of species 
decrease from the centre to the edge of its geographic and environmental range. The CPH is based on the principle that popula-
tions and individuals are more isolated near the range limit of the species, resulting in lower demographic (population-level) and 
fitness (individual-level) performances. Thus, we here consider the CPH as the overarching hypothesis of the ‘abundant–centre’ and  
‘fitness–centre’ hypotheses mentioned in the present study. We recommend Pironon et al. (2017) for a detailed overview on the CPH.

Abundant–centre hypothesis. Subhypothesis of CPH referring to the species’ demographic performance, and specifically to the abun-
dance of individuals. The ‘abundant–centre’ hypothesis states that species abundance is higher at the centre of the species range and 
it decline toward range edges (Sagarin et al. 2006). Such hypothesis has been traditionally proposed as a general macroecological 
rule, but it is still currently under debate. Recent studies are focusing on abundance variation within the environmental range of the 
species, using ecological niche indicators to estimate the species environmental range (Dallas et al. 2017, Santini et al. 2019, Osorio-
Olvera et al. 2020). The ‘abundant–centre’ hypothesis is not addressed in this study.

Fitness–centre hypothesis. Subhypothesis of CPH referring to the fitness of individuals quantified by functional traits or survivorship. 
The ‘fitness–centre’ hypothesis defined here states that individual fitness is expected to be higher at the centre of the species range and 
it decline toward range edges. Like the recent literature on the ‘abundant–centre’ hypothesis, we link the ‘fitness–centre’ hypothesis to 
the environmental range of the species, using probability of occurrence as an ecological niche indicator. Thus, under the ‘fitness–cen-
tre’ hypothesis, a positive coupling is expected between individual fitness and probability of occurrence.
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above or below certain thresholds within the climatic enve-
lope of the species. For instance, rapid changes in performance 
(e.g. photosynthetic rate and frost tolerance) in response to 
temperature affects plant distribution and elevational zona-
tion (Körner 1999).

Finally, in niche modeling approaches, probability of 
occurrence is nearly always estimated at coarse-scale resolu-
tion using macroclimatic data, while species occurrence and 
individual fitness may strongly depend on micro-habitat 
(Suggitt et al. 2011, Greiser et al. 2020). Consequently, low 
probability of occurrence predicted in a geographical unit 
may indicate that a smaller fraction of it is suitable rather 
than the whole unit is less suitable for the species. Such micro-
habitat dependency would then confound fitness–centre rela-
tionships obtained in SDMs, for instance, in species whose 
occurrences and fitness are associated with micro-topography 
(Scherrer and Körner 2011) or slope exposure depending on 
the latitude (Holland and Steyn 1975).

Previous studies using SDMs to address the fitness–cen-
tre hypothesis used various functional traits as surrogates 
of individual fitness in both animals (Larson  et  al. 2010, 
Pellissier et al. 2013, Wittmann et al. 2016, Mammola et al. 
2019, Barela et al. 2020) and plants (Elmendorf and Moore 
2008, Thuiller  et  al. 2010, Sangüesa-Barreda  et  al. 2018, 
Chardon  et  al. 2020) and overall reported heterogeneous 
results. These studies generally tested the hypothesis on sin-
gle species (but see Thuiller  et  al. 2010) or normally used 
few observations of trait data collected in the field (but see 
Chardon et al. 2020), possibly due to the rarity of the spe-
cies under consideration (Mammola et al. 2019) or because 
sampling functional traits at the intraspecific level over large 
areas is time-consuming and expensive.

Due to data availability restrictions, it is still difficult to 
draw conclusion on the validity of the fitness–centre hypoth-
esis. However, both forest inventories and common garden 
experiments represent data sources on plant species occur-
rences and intraspecific functional traits in SDM-related 
approaches (Benito Garzón et al. 2019), but have not been 
applied to test the fitness–centre hypothesis. Specifically, 
field-observed traits reflect the fitness experienced by the 
individuals at their local site. In contrast, common gardens 
remove bias due to differing growing conditions at the site 
of origin to the ones of the common garden site, allowing for 
the quantification of adaptive trait variation while filtering 
out variation caused by site-specific conditions observed at 
the site of origin, which could confound fitness–centre asso-
ciations. From this point of view, fitness data obtained from 
common gardens could show stronger fitness–centre rela-
tions than field-collected data.

Here, we tested whether individual fitness traits correlate 
with probability of occurrence projected with SDMs across 
66 tree species native of North America within their native 
range (Fig. 1). We first compiled two datasets on individual 
growth rate in forest inventory plots of western United States 
(hereafter, ‘field’ data), and growth and survival data reported 
in 23 common garden studies conducted in the United States 
and Canada (hereafter, ‘common garden’ data). Secondly, we 

trained and tested SDMs at 10 km resolution using soil and 
climatic predictors and presence–absence data from United 
States and Canada’s Forest National Inventories. Finally, we 
applied a meta-analytical approach to estimate the mean cor-
relation between individual fitness and coarse probability of 
occurrence estimated at the sampling location (in ‘field’ data) 
or at the site of origin of the individuals (in the ‘common gar-
den’ data) across multiple species, and accounted for poten-
tial modifying factors like dispersal ability and the climatic 
niche’ breadth of the species.

We show that associations between individual fitness and 
coarse-scale probability of occurrence are rare and not affected 
by species-specific traits or by the precision of the SDMs. We 
conclude that hypothesized fitness–centre relationships rep-
resent an exception rather than the rule when modeling envi-
ronmental niches in the geographic space. More broadly, our 
findings reject the universality of centre–periphery hypoth-
esis and pose important constraints in conservation projects 
based upon such assumption.

Material and methods

We tested the fitness–centre hypothesis across 66 species by 
calculating the correlation between individual fitness traits 
sampled within the species distribution range and the coarse 
probability of occurrence estimated at sampling locations 
obtained from SDMs. The analysis was performed in three 
main steps, as summarized in Fig. 1: 1) collection of intra-
specific individual fitness data; 2) estimation of probability 
of occurrence using SDMs for each species; 3) meta-analysis 
combining the fitness–centre relationships across multiple 
species and exploration of potential modifying factors.

Individual fitness estimation

We used two datasets on tree species individual fitness con-
taining 1) field data collected in contiguous western United 
States including the Rocky Mountains, the Great Basin and 
the pacific coast states (i.e. in Arizona, California, Colorado, 
Idaho, Montana, Nevada, New Mexico, Oregon, Utah, 
Washington, Wyoming), and 2) common garden data col-
lected from provenance trial experiments located in United 
States and Canada. We analyzed 66 tree species in total (44 
found in the field dataset only, 13 in the common garden 
dataset only and nine in both datasets). The list of species and 
details on the number of observations available is reported in 
the Supporting information.

Species selection criteria
We restricted the analysis to tree species native to United 
States and Canada (hereafter, Northern America) to reduce 
variation originating from input data and regions with differ-
ent biogeographic conditions. Because our presence–absence 
data used in SDMs were limited to Northern America, we 
did not consider species with substantial parts of the geo-
graphic range located in Mexico to avoid missing occurrences 
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from the warmest area when estimating the environmental 
niche (Soberón et al. 2018). Nevertheless, we retained species 
with the southernmost distribution range located in Mexico 
in case their occurrence is confined to high-elevation areas 
where we expected similar climatic conditions of low-eleva-
tion areas found at higher latitudes of northern America (e.g. 
ponderosa pine Pinus ponderosa, black cottonwood Populus 
trichocarpa, Douglas-fir Pseudotsuga menziesii). Indeed, 
occurrences of these species showed a linear negative rela-
tion between latitude and elevation, at least within northern 
America (Supporting information). Information on species’ 
ranges distribution were obtained from the ‘Atlas of United 
States Trees’ (US Geological Survey 1999) and ‘Plants of the 
World Online’ (POWO 2019).

Trait data collection
For the field data, we used the United States Forest Inventory 
Analysis database (FIA) to obtain data on individual growth 
as a proxy of individual fitness (retrieved from FIA’s datamart: 

<https://apps.fs.usda.gov/fia/datamart>). To quantify yearly 
average growth of individuals, we only retained observations 
where either height or diameter at breast height (DBH) 
were reported in combination with the age of the individ-
ual. Observations reporting age in combination with height 
or DBH were only available in plots located in continen-
tal western United States. Depending on the species and 
sampling procedure, age was either reported as tree rings 
from an increment core sample extracted at the root collar 
(TOTAGE = ‘total age’) or at the breast height (1.37 m above 
ground) (BHAGE = ‘breast height age’). Thus, to eliminate 
the effect of stand density and tree age on the size-growth rela-
tions (Pretzsch and Dieler 2011), we calculated the median 
of the ratio between height and/or DBH to TOTAGE and/
or BHAGE for each plot and species. We used the median 
to avoid effects of outliers. Individual height and diameter 
were standardized by the age to capture vertical and radial 
tree growth rate. Thus, our metric assigned higher fitness to 
shorter-lived trees with greater height or DBH compared to 

Figure 1. Schematic representation of the methodological steps applied in this study (each step reflects subsections of the ‘Material and 
methods’ section): (I) for multiple species (in the example, lodgepole pine Pinus contorta), we estimated individual fitness from field data 
(Forest Inventory Analysis of US Forest Service) and/or common garden experiments available from the literature (in the example, data 
from Mahony et al. 2020, ‘Data sources’ section); (II) we obtained probability of occurrence from species distribution model (SDM) using 
presence–absence data retrieved from United States and Canada’s National Forest Inventories. After we calculated the correlation between 
individual fitness at site location and probability of occurrence for multiple species and individual fitness traits, we (III) applied a meta-
analytical approach to estimate the mean correlation coefficient across multiple species. Geographic points in the figure are spatially thinned 
for plotting purposes.
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older trees who reached maximum growth rate. In general, 
individual growth rate is a key component of individual fit-
ness of an organism (Violle et al. 2007). Specifically, growth 
rate of trees enhances individual competitive ability in natu-
ral forest ecosystems (Morgenstern 1996) and can positively 
influence reproductive success of individuals (Avanzi  et  al. 
2015). In addition, individual growth rate has been previ-
ously shown having a positive coupling with SDM-modelled 
probability of occurrence in grass carp Ctenopharyngodon 
idella (Wittmann  et  al. 2016). We only retained species 
with at least 30 plots with calculable individual height or 
DBH to age ratios. Number of presences (and correspond-
ing absences) per single trait and species selected ranged 
from 31 to 17 956 (median = 301, SD = 2920) (Supporting 
information).

For the common garden data, we collected individual 
fitness from the literature on provenance trial experiments. 
These studies report data on specimens originating from dif-
ferent locations (i.e. provenances) and simultaneously grown 
in one or more common garden located within the species 
range. Data reported are sampled over individuals of the same 
age sampled at the end of the experiment or throughout it. In 
February 2020 we searched in Web of Knowledge for primary 
studies reporting data from common garden experiments 
conducted in northern America (cf. Supporting information 
for the search string). Our initial search string yielded 476 
results from Web of Knowledge. We also searched for com-
mon garden data at the United States Forest Service Research 
Data Archive. We selected additional sources from studies 
cited by the articles retained in the search string that were 
eligible for inclusion. After screening results from the main 
search string and the Forest Service Research Data Archive, 
we selected 19 primary studies and four data papers eligible 
for inclusion (‘Data source’ section). On average, experi-
ments reported trait data after 13 (SD = 11) growing sea-
sons (range of the year of experiments’ start = 1961–2014, 
and experiments’ end = 1979–2016). Each source selected 
reported at least one of the following mean responses for each 
provenance and species: height, diameter, survival or growth 
rate. Height, diameter and survival were reported as the data 
collected after a certain period or at end of the experiment. 
Since common gardens were relatively short-running and 
conducted on coetaneous-transplanted individuals, height 
and diameter reported at the end of the common garden trials 
represent growth rate over the period of the common garden 
trial. Thus, we assumed height and diameter in ‘common gar-
den’ data to be directly proxies of individuals’ growth rates. In 
addition, we used final height and diameter in the ‘common 
garden’ data as proxies of individuals’ growth rate as these 
are commonly used as growth indicators in provenance trials 
experiments (Taïbi et al. 2014, Warwell and Shaw 2017 in 
‘Data sources’). Conversely, growth rate was reported by stud-
ies as the mean yearly increment of height, biomass or vol-
ume of each provenance during the experiment. We collected 
the geographical coordinates and mean value of the response 
measures for each study, provenance and common garden’ 
site. Data were retrieved from tables, figures and supporting 

information of the study, or provided directly by the authors. 
Provenances assessed per studies and species ranged in total 
from 6 to 281 (median = 42, SD = 51.2).

Probability of occurrence estimation

Presence–absence data
We obtained presence–absence data from the USDA Forest 
Inventory Analysis (FIA) (Burrill  et  al. 2018) and ground 
plots of Canada’s National Forest Inventory (<https://nfi.
nfis.org>). These datasets contain geographical coordinates 
of standardized plots and can be therefore used to train and 
test SDMs. By relying on forest inventory plots, we used true 
absence data to fit SDMs rather than randomly generated 
pseudo-absences.

The United States FIA dataset contained ground plot 
inventories sampled from 1968 to 2019, each made by 
four subplots of 168 m2 area located within 1-acre sample 
area (Burrill et al. 2018 for detailed description of sampling 
design). From these plots we only selected those located in 
continental United States and excluded those located in arti-
ficial forest stands. In addition, we excluded plots located in 
‘Private’ or ‘Native American’ land, to reduce the effects of 
cultural management and because these plots’ coordinates are 
swapped with other plots within the same county for legal 
reasons. Our selection resulted in 103 786 plot locations in 
total available from the United States. The Canada NFI data-
set contained ground plots sampled from 1992 to 2007 with 
400 m2 and 50 m2 area for surveys of large (DBH ≥ 9 cm) 
and small (DBH < 9 cm) trees, respectively. In total, 985 plot 
locations were used as background for presence–absence data 
in Canada.

For each of the 66 species selected for the analysis, we ran-
domly sampled n absence locations 30 times among all the 
sampled plots, where n was the number of presences available 
from that species across ground plots data. Given the compu-
tationally intensive calculations of SDMs, we used 30 repli-
cates per algorithm applied and species (see Davis et al. 2018 
for another use of the same number of replicates for compu-
tationally heavy analyses). To sample corresponding absences 
more uniformly in the study area and to overcome potential 
different sampling efforts across northern American states, we 
selected absences within each state up to the equal number of 
presences available for that state. Such approach allows not 
to randomly select absences within areas where the species is 
absent due to historical factors (Guisan et al. 2017). Finally, 
for each of the 30 replicates, we thinned observations to a 
minimum distance of 10 km to reduce spatial autocorrela-
tion using the ‘ecospat.occ.desaggregation’ function of the R 
package ecospat (Di Cola et al. 2017). This distance reflected 
the resolution of the environmental predictors used in SDMs 
and it was selected to account for maximum distance uncer-
tainty of presence–absence data in Canada’s ground plots (10 
km) and to reduce overly close-sampled areas in US.

Coordinates of presence–absence data (i.e. the plot loca-
tion) used in our analysis had 1.6 km and 10 km uncertainty 
for United States FIA and Canada NFI data, respectively 



794

(except for 433 plots located in British Columbia, Quebec 
and New Brunswick, of which exact coordinates were avail-
able). For this reason, we explored how coordinate impreci-
sion potentially affected results and conclusion of our analysis 
due to inaccurate estimate of environmental conditions at 
locations where the species occurs. We report methodological 
details and results of this sensitivity analysis in the Supporting 
information. The sensitivity analysis was performed on the 
subset of species and presence/absence data did not affect our 
conclusions.

Species distribution models
We modeled and projected current species’ probability of 
occurrence in North America (decimal degrees’ longitude: 
179° to 52°W; and latitude: 24° to 83°N) using the sdm R 
package (Naimi and Araújo 2016). We applied bioclimatic 
and soil data at a resolution of 10 km at the equator as predic-
tors. We used 19 climatic variables from WorldClim database 
(ver. 2.0; <www.worldclim.org>, Fick and Hijmans 2017) 
and the aridity index, measured as the ratio of mean annual 
precipitation (estimated by WorldClim database) to the 
potential evapotranspiration extracted from the CGIAR‐CSI 
GeoPortal (Trabucco and Zomer 2010). In addition, we used 
six soil variables (i.e. depth to bedrock, bulk density, organic 
carbon content, soil pH in H2O, cation exchange capac-
ity and weight percentage of sand particles) obtained from 
SoilGrids database (Hengl  et  al. 2017). Soil variables were 
obtained by averaging estimated parameters within the top 
30 cm layer (except for depth to bedrock). To avoid collinear-
ity among predictors, we automatically selected a subset of 
predictors for each species by iteratively excluding variables 
with the variance inflation factor (VIF) greater than 10 using 
the ‘vifstep’ function of the usdm R package (Naimi  et  al. 
2014) and only retained selected variables occurring across 
all the 30 replicates.

We ran SDMs models using six different algorithms for 
each of the 30 replicates per species. We used subsampling 
partitioning using 30% of randomly sampled observations 
in each run to test the model (Guisan et al. 2017). The algo-
rithms used in modeling were the following: generalized 
linear model (GLM), generalized additive model (GAM), 
boosted regression tree (BRT), random forest (RF), multivar-
iate adaptive regression splines (MARS) and support-vector 
machine (SVM). We used model ensemble to project proba-
bility of occurrence by weighting each model by the true skill 
statistic (‘TSS’) using the maximum sum of model sensitivity 
and specificity as cutoff optimization threshold.

Meta-analysis

Effect size calculation
After we obtained the spatial projections of probability of 
occurrence, we extracted for each species the probability 
of occurrence at the locations where traits were sampled in 
ground plots (‘field’ data), and locations where the prov-
enances tested at the common garden site originated (‘com-
mon garden’ data). Then, because our goal was to assess the 

coupling between SDM-modeled probability of occurrence 
and individual fitness, we used Spearman’s correlation coef-
ficient between each trait and the probability of occurrence 
of the species as the effect-size to quantify the direction and 
magnitude of the fitness–centre relationship (Santini  et  al. 
2019, Osorio-Olvera  et  al. 2020). For the ‘field’ data, we 
used the ‘weightedCorr’ function of the wCorr R package 
(Emad and Bailey 2017) to weight correlation coefficients by 
the number of individuals sampled in each plot. In the case 
of the common garden data, we computed unweighted cor-
relation coefficients for each common garden site and species 
assessed by single study, as the number of individuals sampled 
per provenance was the same within each trial unit.

Nearby sample sites may not be independent and there-
fore, for each pairwise correlation, we checked for spatial 
autocorrelation of the residuals obtained from a linear model 
with trait value as the dependent variable, and probability of 
occurrence and its quadratic term as the predictors. Before 
fitting the linear model, we log-transformed growth traits in 
the field data as these were in most cases positively skewed. 
Then, we used the ‘spline.correlog’ function of the ncf R pack-
age (Bjornstad 2020) over the residuals of the linear model 
to obtain Moran’s I correlograms. From these, we identified 
the minimum geographic distance to which spatial autocor-
relation was estimated to be not significant. To remove the 
effect of spatial autocorrelation, we then calculated 999 times 
the correlation coefficient between probability of occurrence 
and trait measurements by randomly thinning each time 
the sampling locations to the minimum distance threshold 
estimated for each species and trait. Random thinning was 
performed using the ‘thin’ function of the spThin R package 
(Aiello-Lammens et al. 2015). We then took the median of 
both sample size and correlation coefficients to be used in 
meta-analysis. Our procedure means that the end-results are 
influenced by all sample sites available but distant and more 
independent sample sites are given a higher importance than 
sample sites showing substantial spatial autocorrelation to 
nearby sample sites.

We estimated the significance of each correlation coefficient 
by back-transforming 95% confidence intervals obtained by 
the Fisher’s z-transformation, which allow to estimate associ-
ated sampling variance of correlation coefficients (i.e. 1/(N 
− 3); where N is the sample size) (Borenstein et al. 2009).

Linear mixed-effect models
Using linear mixed effect-models we applied an approach 
similar to a meta-analysis to estimate the mean effect of fit-
ness–centre relationship across the species and traits ana-
lyzed, and to investigate how such relationship is affected 
by potential modifying factors. We used the ‘lmer’ function 
of the lme4 R package (Bates  et  al. 2015) for each dataset 
separately (i.e. field and common garden data). We used 
Spearman’s correlation coefficients as the dependent variable 
of the fixed component of the model, and the species and the 
study (namely, the identifier of the common garden study) 
as crossed random effects in the common garden data (i.e. 
(1|species) + (1|study)). For the field data, only the species was 
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used as random effect. We weighted each correlation coef-
ficient by multiplying the sample size of the correlation coef-
ficient by the maximum true skill statistic (TSS) of the SDM 
obtained from that species. In other words, observations with 
many sampled locations and with probability of occurrence 
obtained from more accurate models contributed more to the 
overall mean estimate.

We first estimated the mean weighted correlation between 
fitness and probability of occurrence using null models for 
each dataset. Secondly, we used five predictors we expected 
to moderate the effect sizes, namely: the different metrics 
of individual’s fitness traits, the main taxonomic group (i.e. 
angiosperm versus gymnosperm), species dispersal ability 
and species temperature and precipitation breadth (i.e. the 
climatic range of the species). We used different metrics of 
individual’s fitness traits as moderator to identify whether 
different dimension of fitness have intrinsically different 
relationship with probability of occurrence, or if they overall 
respond in a similar way. In addition, in the common garden 
data, we also used the probability of occurrence of the loca-
tion of the common garden site as predictor.

Dispersal ability affects population isolation and gene 
flow shaping functional trait variability and local adaptation 
within the species’ range (Sexton et al. 2014, Pironon et al. 
2017). Species’ seed weight was used as a proxy of species dis-
persal ability and obtained from the seed information data-
base (SID) of the Royal Botanic Gardens Kew (2020). Two 
species of poplar (black cottonwood Populus trichocarpa and 
narrowleaf cottonwood Populus angustifolia), lacked data on 
seed weight and for these we used the median of the genus. 
Similarly, larger climatic variability within the species’ range 
is expected to facilitate intraspecific functional trait variability 
(Violle and Jiang 2009), thus potentially affecting the prob-
ability of detecting such variation within a gradient of prob-
ability of occurrence. Temperature and precipitation breadth 
were estimated as the difference between the 90% and 10% 
quantile values estimated at the location of the species’ occur-
rences. We used temperature and precipitation average of the 
warmest year quarter (‘BIO10’ and ‘BIO18’ in WorldClim, 
respectively) at 10 km resolution. We log-transformed seed 
weight and precipitation breadth due to strong positively 
skewedness.

We scaled and centered all continuous variables to a mean 
of 0 and standard deviation of 1 using the ‘scale’ function of 
R (<www.r-project.org>), and checked for collinearity prior 
to modeling. Starting from a full model including all the pre-
dictors mentioned above, we performed a stepwise backward 
selection via likelihood ratio tests.

Finally, we checked whether SDMs’ TSS and sample size 
(namely, the weight assigned to each correlation coefficient 
used in the mixed-effect models) affected the correlation 
observed between probability of occurrence and individual 
fitness. Such approach is comparable to the analysis of pub-
lication bias in meta-analysis (Nakagawa and Santos 2012). 
Thus, we estimated the significance of the intercept of a linear 
regression model using the residuals of the null mixed-effect 
model as dependent variable, and the observation’s weight  

(= sample size × maximum TSS) as predictor (Nakagawa and 
Santos 2012). The weight term used in linear mixed effect 
models had no influence on the variation of correlation coef-
ficients (Supporting information).

Results

We found poor support for the fitness–centre hypothesis in 
North American tree species. Pairwise correlation coefficients 
between individual fitness and probability of occurrence 
ranged from −0.50 to 0.49 (field data) and −0.64 to 0.56 
(common garden data), with mean-weighted-correlation close 
to zero (Fig. 2). Importantly, only the 12% and 11% of the 
correlation coefficients were positively significant for the field 
and the common garden data, respectively. In addition, and 
contrary to what is expected by the fitness–centre hypothesis, 
we found few correlations with a negative significant trend 
(corresponding to the 10% and 2% of observations, for the 
field and the common garden data, respectively). Thus, in 
the field data, significant positive associations were detected 
consistently across all response traits in only six out of 53 
species analyzed: Rocky Mountain maple Acer glabrum, big-
tooth maple Acer grandidentatum, red alder Alnus rubra, giant 
chinquapin Chrysolepis chrysophylla, foothill pine Pinus sabin-
iana and coast redwood Sequoia sempervirens. In the common 
garden data, Douglas-fir Pseudotsuga menziesii was the species 
showing the highest fraction (38%) of positively significant 
pairwise correlations across common garden sites and traits 
examined, while others showed 17% or less.

Overall, mean correlations were not significantly differ-
ent across the trait measurement types analyzed, suggesting 
similar responses between survival and various dimensions of 
individual growth (Fig. 3). Furthermore, none of the species’ 
trait predictors considered in multiple regression (i.e. seed 
weight, temperature breadth and precipitation breadth) had 
a significant effect on the variation of the correlation coeffi-
cients. In the field data, the mean correlation of angiosperms 
(estimate = 0.08; SE = 0.03) was significant differently to 
that of gymnosperms, which was equal to zero. The mean 
correlation in angiosperms was however too low to indicate 
a substantial fitness–centre association and no such differ-
ences were detected in the common garden data (Supporting 
information).

Discussion

By combining individual fitness data from forest invento-
ries and common gardens in North America, we showed 
that individual fitness indicators (growth and survival) are 
poorly associated with coarse-scale probability of occurrence 
projected with SDMs. Furthermore, we found the lack of 
fitness–centre relationships are pervasive across species with 
different potential dispersal ability and climatic breadth. 
Finally, we detected no influence of the precision of SDMs 
(expressed with maximum true skill statistic (TSS) of models 
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used to ensemble the models) on the magnitude and direc-
tion of the fitness–centre correlations. Thus, our results reject 
the fitness–centre hypothesis stating that individual fitness is 
higher in locations with higher SDM-modeled probability of 
occurrence.

Why the fitness–centre hypothesis may not hold

The fitness–centre hypothesis has been detected for cer-
tain species in previous studies (Nagaraju  et  al. 2013, 
Wittmann  et  al. 2016, Sangüesa-Barreda  et  al. 2018, 
Mammola et al. 2019) but not in others (Larson et al. 2010, 
Barela  et  al. 2020, Chardon  et  al. 2020). However, these 
studies show three main methodological limitations (which 
we will discuss in detail below). Such limitations concern the 
restricted number of species analyzed, the amount of observa-
tion available to quantify fitness–centre relationships, and the 
type of trait data used to address the hypothesis.

First, previous studies tested the hypothesis on one or few 
species. Because our results suggest that fitness–centre cor-
relations across multiple species are normally distributed 
around the zero, restricting the analysis to only few species 
makes the hypothesis more likely to be supported by chance 
alone (Santini et al. 2019). Thus, while positive fitness–centre 
associations are clear for certain species, these may simply not 
hold true in other species (Thuiller et al. 2010, Pellissier et al. 
2013) or even show a negative relationship (Barela  et  al. 
2020). Indeed, our analysis did not detect an effect of species-
specific traits (dispersal ability and climatic breadth) on the 
fitness–centre relationship, suggesting that correlations are 
randomly distributed across ecologically different species.

Second, due to sampling limitations, previous studies 
often used few individual fitness records, which are likely 

a poor representation of the full geographic range (but see 
Chardon et al. 2020). Conversely, our datasets allowed us to 
address the hypothesis over a significantly larger amount of 
observations over the entire species range. In addition, we 
used presence–absence data to train and test SDMs, which 
is generally a preferable approach than ‘presence-only’ SDMs 
(Guisan  et  al. 2017). Appropriate sampling across the spe-
cies range allows for better estimation of the covariation 
between traits and the environmental optimum of the species 
(Soberón et al. 2018). Indeed, consistent with our findings, 
Chardon et al. (2020) used a comprehensive set of geographic 
records of the cushion plant Silene acaulis and showed no 
relationship between individual fitness (plant individual size) 
and probability of occurrence, even within the same genetic 
and geographic groups.

Third, while previous studies addressing the fitness–cen-
tre hypothesis solely rely on fitness data collected in situ, 
common garden data reported here were used to quantify 
survival and to test directly for the association between adap-
tive trait variation and modeled probability of occurrence. 
Common garden experiments where individuals are grown 
in controlled conditions removes in situ individual variation 
originated from other causes than probability of occurrence. 
In our case, growth rate of an individual trees can be affected 
by local biotic interactions with surrounding trees (e.g. light 
competition), presence of herbivores, parasites and forest 
utilization (Smith et al. 1997). Our approach showed never-
theless that adaptive trait variation and survival observed at 
common garden sites are unrelated to the coarse scale predic-
tions of species occurrence.

Our findings agree with recent literature addressing the 
centre–periphery hypothesis over multiple plant and ani-
mal species and revealing no consistent trend (Thuiller et al. 

Figure 2. Overall distribution of the Spearman’s correlation coefficients (ρ) between species’ probability of occurrence and individual fitness 
sampled in (a) field data (from Forest Inventory Analysis of US Forest Service, FIA) and (b) common garden experiments’ data. Purple-
shaded bars represent the distribution of significant coefficients (p-value < 0.05). Red vertical lines indicate the mean pooled estimate (solid 
line) and its 95% CI (dashed lines) obtained from null mixed effect models using species (and study as well, for common garden data) in 
the random component of the model. Observations in the model are weighted by multiplying the sample size of the correlation coefficient 
by the maximum ‘true skill statistic’ (TSS) of the SDM obtained from that species.
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2014, Dallas et al. 2017, Pironon et al. 2017, Santini et al. 
2019; but see Osorio-Olvera  et  al. 2020). Overall, recent 
simulations on artificial landscapes have showed support to 
the centre–periphery relationships only when certain con-
ditions are met (i.e. deterministic population growth, high 
dispersal, low competition), which rarely occur in the real-
ity of natural systems (Dallas and Santini 2020). Particularly, 
Dallas  et  al. (2017) showed that abundance of tree species 
(as well as birds, fishes and mammals) in the United States 

does not correlate with distance to the environmental cen-
troid reporting mean abundance–distance correlation coef-
ficients close to zero. Similarly, Thuiller et al. (2014) found 
uncertain relationship between probability of occurrence and 
tree populations’ dynamics (population growth rate, carrying 
capacity and population density) in Northern America and 
Europe. Like our study, Thuiller et al. (2014) included data 
from forest inventory plots located in western United States; 
yet, their analysis focused on population-level traits (i.e. basal 
area) related to local abundance rather than individual tree 
growth.

Pironon et al. (2017) and Santini et al. (2019) report vari-
ous arguments for which centre–periphery hypothesis might 
not hold true that are transferable to our hypothesis tested 
here: 1) individual fitness can show abrupt rather than linear 
declines from the centre to the edge of the environmental 
niche; 2) fitness might depend on biotic interactions, which 
are not accounted for in SDMs; 3) occurrences of specimens 
and their individual performance might not be in equilib-
rium with the environment.

In addition, we also highlight that coarse-scale modeling 
approaches cannot capture microhabitat properties where 
individuals live. Since important factors affecting plant 
growth depend upon micro-habitat (Suggitt et al. 2011) and 
topography (e.g. slope aspect) (Cantlon 1953, Holland and 
Steyn 1975), the lack of support for the fitness–centre hypoth-
esis found here and elsewhere needs to be circumscribed to 
the coarse-scale level only. Under this point of view, more 
advanced niche modeling approaches accounting for micro-
habitat conditions (Lembrechts et al. 2019) and biotic inter-
actions trough joint distribution models (Clark et al. 2017) 
would be more likely to detect a consistent trend between 
individual fitness and probability of occurrence. In general, 
additional uncertainties other than coarse-scale resolution to 
detect such trends could be present when SDMs fail to prop-
erly model species distribution under certain circumstances, 
such as missing relevant environmental variables for certain 
species or wrong model structures.

We acknowledge that tree fitness in the field data were 
potentially affected by noise caused by temporal variation 
in sampling growth rate of different individuals at different 
times that do not match environmental conditions of bio-
climatic predictors used to obtain SDMs. We further note 
that unaccounted temporal fluctuation of individual fitness 
in space (e.g. caused by pests’ outbreaks and forest utiliza-
tion) could produce additional noise to field data retrieved 
from forest inventory data (Thuiller et al. 2014). Yet, we also 
underline that climatic data used in our SDMs represented 
the historical averaging climatic conditions (1970–2000) 
matching the time period in which individuals were sampled 
in the field data and that such cross-individuals temporal 
fluctuation is virtually absent in common garden data, where 
individuals are simultaneously grown and sampled.

Finally, we here mainly focused on growth rate data (except 
for survival assessed in the common garden data). Yet, a com-
bination of indicators other than growth rates, like fecundity 

Figure  3. Distribution of Spearman’s correlation coefficients (ρ) 
between species’ probability of occurrence and individual fitness 
across different response traits analyzed (violin plot) for (a) field 
data (from Forest Inventory Analysis of US Forest Service, FIA) and 
(b) common garden experiments’ data. No significant difference 
was detected across different response traits analyzed in both datas-
ets. Grey squared points indicate mean pooled effect (and 95% CI) 
obtained from mixed-effect models using response trait type as pre-
dictor (n = number of pairwise correlations). Horizontal dashed line 
indicates Spearman’s correlation equal to zero. Response traits in 
field data are diameter at breast height (DBH) and tree height (HT) 
standardized to age estimated at the root collar (TOTAGE) or at the 
breast height (BHAGE).
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and seedling survival, could potentially be more closely cor-
related to probability of occurrence modeled by SDMs than 
individual growth rate, as these are key determinant of plant 
persistence in space.

General implications

Addressing the validity of the fitness–centre hypothesis has 
important implications for conservation and applied biodi-
versity management. Indeed, several conservation studies are 
based upon estimations of coarse modeled habitat suitability 
based on occurrence records to predict areas where species will 
most likely harbors individuals of that species (Peterson et al. 
2002, Fitzpatrick et al. 2008, Zhang et al. 2020). However, 
a lack of the underlying fitness–centre relationship alters our 
interpretation of how modeled probability of occurrence is 
linked to the ability of specimens to survive and grow in a 
given location, affecting decisions on where to prioritize con-
servation efforts. Based on our results, areas with lower prob-
ability of occurrence might be occupied by individuals with 
higher fitness compared to those located in areas estimated 
with higher probability of occurrence. In such cases, the fit-
ness of individuals located in areas with lower probability of 
occurrence are likely to be either positively affected by cer-
tain biotic and micro-habitat conditions neglected by SDMs, 
or locally adjusting through adaptation and plasticity, for 
instance, in response to climate change (Nicotra et al. 2010). 
In addition, eco-evolutionary processes in response to range 
shifts occurring in areas with lower probability of occurrence 
could help maintaining high genetic variation enhancing 
individual fitness, as long as climate change or other factors 
do not enhance isolation and restrain gene flow from popula-
tions nearby (Pironon et al. 2017, Nadeau and Urban 2019).

We suggest that using data on intraspecific variability of 
fitness-related traits in concert with SDMs could improve 
conservation planning. Indeed, mapping functional traits in 
space can be used as a tool to evaluate the output of SDMs 
and its biological meaning. For instance, identifying popula-
tions with greater longevity and dispersal ability located in 
areas with high probability of occurrence could help to trace 
most suitable biological corridors facilitating range shifts. 
Conserving high-fitness individuals occurring in most envi-
ronmentally suitable areas could also produce more economi-
cally effective conservation plans when resources are limited.

Concluding remarks

Here, we determine that spatial variation in individual fitness 
within the species distribution range is not explained by the 
output of SDMs, contrary to what showed by some previ-
ous analyses. Although our results were limited to a single 
system (i.e. tree species in North America) our results clearly 
highlight that a strong pattern cannot safely be assumed to 
work in any system unless there is specific evidence of a fit-
ness–centre coupling for a certain system. In that regard, we 

highlight that we could not find any evidence of dispersal 
capacity and climatic breath to influence the overall results. 
Thus, the main takeaway from our study is that while the 
fitness–centre is supported by theory surrounding the con-
cept of environmental niche (Pulliam 2000), it does not hold 
true in nearly any species. Because individual fitness plays a 
relevant role in buffering local extinction and range contrac-
tion following environmental changes and biotic invasions 
(Anderson 2016), our results imply that conservation proj-
ects relying on the assumption of the fitness–centre hypoth-
esis should be revised. We thus recommend assessing how 
individual fitness vary within the current species range along 
modeled probability of occurrence before inferring conclu-
sions on present and future range contractions based on 
SDMs.
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