137 research outputs found

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Study of the Λ\Lambda-Λ\Lambda interaction with femtoscopy correlations in pp and p-Pb collisions at the LHCC

    No full text
    This work presents new constraints on the existence and the binding energy of a possible Λ\Lambda-Λ\Lambda bound state, the H-dibaryon, derived from Λ\Lambda-Λ\Lambda femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at s=13\sqrt{s}=13 TeV and p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, combined with previously published results from pp collisions at s=7\sqrt{s}=7 TeV. The Λ\Lambda-Λ\Lambda scattering parameter space, spanned by the inverse scattering length f0−1f_0^{-1} and the effective range d0d_0, is constrained by comparing the measured Λ\Lambda-Λ\Lambda correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the Λ\Lambda-Λ\Lambda interaction. The region in the (f0−1,d0)(f_0^{-1},d_0) plane which would accommodate a Λ\Lambda-Λ\Lambda bound state is substantially restricted compared to previous studies. The binding energy of the possible Λ\Lambda-Λ\Lambda bound state is estimated within an effective-range expansion approach and is found to be BΛΛ=3.2−2.4+1.6(stat)−1.0+1.8(syst)B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\rm{(stat)}^{+1.8}_{-1.0}\rm{(syst)} MeV.This work presents new constraints on the existence and the binding energy of a possible Λ–Λ bound state, the H-dibaryon, derived from Λ–Λ femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in Image 1 collisions at s=13 TeV and p–Pb collisions at sNN=5.02 TeV, combined with previously published results from Image 1 collisions at s=7 TeV. The Λ–Λ scattering parameter space, spanned by the inverse scattering length f0−1 and the effective range d0 , is constrained by comparing the measured Λ–Λ correlation function with calculations obtained within the LednickĂœ model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the Λ–Λ interaction. The region in the (f0−1,d0) plane which would accommodate a Λ–Λ bound state is substantially restricted compared to previous studies. The binding energy of the possible Λ–Λ bound state is estimated within an effective-range expansion approach and is found to be BΛΛ=3.2−2.4+1.6(stat)−1.0+1.8(syst) MeV.This work presents new constraints on the existence and the binding energy of a possible Λ\Lambda-Λ\Lambda bound state, the H-dibaryon, derived from Λ\Lambda-Λ\Lambda femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at s=13\sqrt{s}=13 TeV and p-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, combined with previously published results from p-Pb collisions at s=7\sqrt{s}=7 TeV. The Λ\Lambda-Λ\Lambda scattering parameter space, spanned by the inverse scattering length f0−1f_0^{-1} and the effective range d0d_0, is constrained by comparing the measured Λ\Lambda-Λ\Lambda correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the Λ\Lambda-Λ\Lambda interaction. The region in the (f0−1,d0)(f_0^{-1},d_0) plane which would accommodate a Λ\Lambda-Λ\Lambda bound state is substantially restricted compared to previous studies. The binding energy of the possible Λ\Lambda-Λ\Lambda bound state is estimated within an effective-range expansion approach and is found to be BΛΛ=3.2−2.4+1.6(stat)−1.0+1.8(syst)B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\mathrm{(stat)}^{+1.8}_{-1.0}\mathrm{(syst)} MeV

    Global polarization of Λ and Λ hyperons in Pb-Pb collisions at √ s N N = 2.76 and 5.02 TeV

    No full text
    The global polarization of Λ and Λ hyperons is measured for Pb-Pb collisions at √sNN = 2.76 and 5.02 TeV recorded with the ALICE at the Large Hadron Collider (LHC). The results are reported differentially as a function of collision centrality and hyperon’s transverse momentum (pT ) for the range of centrality 5–50%, 0.5 < pT < 5 GeV/c, and rapidity |y| < 0.5. The hyperon global polarization averaged for Pb-Pb collisions at √sNN = 2.76 and 5.02 TeV is found to be consistent with zero, ⟹PH⟩(%)≈0.01±0.06(stat.)±0.03(syst.) in the collision centrality range 15–50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at the Relativistic Heavy Ion Collider, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%

    Production of (anti-)3He and (anti-)3H in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential yields of (anti-)3He and (anti-)3H measured in p-Pb collisions at sNN−−−√ = 5.02 TeV with ALICE at the LHC are presented. The ratios of the pT-integrated yields of (anti-)3He and (anti-)3H to the proton yields are reported, as well as the pT dependence of the coalescence parameters B3 for (anti-)3He and (anti-)3H. For (anti-)3He, the results obtained in four classes of the mean charged-particle multiplicity density are also discussed. These results are compared to predictions from a canonical statistical hadronization model and coalescence approaches. An upper limit on the total yield of 4He¯ is determined

    Measurement of dielectron production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The first measurement of dielectron (e+e−) production in central (0−10%) Pb-Pb collisions at sNN−−−√ = 2.76 TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range 0<mee<3.5 GeV/c2. The ratio of data and the cocktail of hadronic contributions without vacuum ρ0 is measured in the invariant-mass range 0.15<mee<0.7 GeV/c2, where an excess of dielectrons is observed in other experiments, and its value is 1.40±0.28 (stat.)±0.08 (syst.)±0.27 (cocktail). The dielectron spectrum measured in the invariant mass range 0<mee<1 GeV/c2 is consistent with the predictions from two theoretical model calculations that include thermal dielectron production from both partonic and hadronic phases with in-medium broadened ρ0 meson. The fraction of direct virtual photons over inclusive virtual photons is extracted for dielectron pairs with invariant mass 0.1<mee<0.3 GeV/c2, and in the transverse-momentum intervals 1<pT,ee<2 GeV/c and 2<pT,ee<4 GeV/c. The measured fraction of virtual direct photons is consistent with the measurement of real direct photons by ALICE and with the expectations from previous dielectron measurements at RHIC within the experimental uncertainties

    Investigations of Anisotropic Flow Using Multiparticle Azimuthal Correlations in pppp, p−Pbp-Pb, Xe-Xe, and Pb-Pb Collisions at the LHC

    No full text
    International audienceMeasurements of anisotropic flow coefficients (vn) and their cross-correlations using two- and multiparticle cumulant methods are reported in collisions of pp at s=13  TeV, p-Pb at a center-of-mass energy per nucleon pair sNN=5.02  TeV, Xe-Xe at sNN=5.44  TeV, and Pb-Pb at sNN=5.02  TeV recorded with the ALICE detector. The multiplicity dependence of vn is studied in a very wide range from 20 to 3000 particles produced in the midrapidity region |η|v3>v4 is found in pp and p-Pb collisions, similar to that seen in large collision systems, while a weak v2 multiplicity dependence is observed relative to nucleus-nucleus collisions in the same multiplicity range. Using a novel subevent method, v2 measured with four-particle cumulants is found to be compatible with that from six-particle cumulants in pp and p-Pb collisions. The magnitude of the correlation between vn2 and vm2, evaluated with the symmetric cumulants SC(m,n) is observed to be positive at all multiplicities for v2 and v4, while for v2 and v3 it is negative and changes sign for multiplicities below 100, which may indicate a different vn fluctuation pattern in this multiplicity range. The observed long-range multiparticle azimuthal correlations in high multiplicity pp and p-Pb collisions can neither be described by pythia 8 nor by impact-parameter-Glasma, music, and ultrarelativistic quantum molecular dynamics model calculations, and hence, provide new insights into the understanding of collective effects in small collision systems

    Measurement of dielectron production in central Pb-Pb collisions at sNN\sqrt{{\textit{s}}_{\mathrm{NN}}} = 2.76 TeV

    No full text
    The first measurement of dielectron (e+e−) production in central (0–10%) Pb–Pb collisions at sNN=2.76TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range 0<mee<3.5GeV/c2. The ratio of data and the cocktail of hadronic contributions without vacuum ρ0 is measured in the invariant-mass range 0.15<mee<0.7GeV/c2, where an excess of dielectrons is observed in other experiments, and its value is 1.40±0.28(stat.)±0.08(syst.)±0.27(cocktail). The dielectron spectrum measured in the invariant mass range 0<mee<1GeV/c2 is consistent with the predictions from two theoretical model calculations that include thermal dielectron production from both partonic and hadronic phases with in-medium broadened ρ0 meson. The fraction of direct virtual photons over inclusive virtual photons is extracted for dielectron pairs with invariant mass 0.1<mee<0.3GeV/c2 and in the transverse-momentum intervals 1<pT,ee<2GeV/c and 2<pT,ee<4GeV/c. The measured fraction of virtual direct photons is consistent with the measurement of real direct photons by ALICE and with the expectations from previous dielectron measurements at RHIC within the experimental uncertainties
    • 

    corecore