13 research outputs found

    Histological Evaluation of Wound Healing Effect of Topical Phenytoin on Rat Hard Palate Mucosa

    Get PDF
    Extension and duration of wound healing following periodontal surgery are very important. The aim of present study was histological evaluation of wound healing of topical phenytoin on rat hard palate mucosa. A total of 60 rats were randomly divided into four groups of 15(n=15). A standard 4×6 mm diameter wound was created on the hard oral palate of each rat. The control group were given an equal volume of normal saline. The group of phenytoin and chitosan gel received the topical gel of phenytoin and chitosan, respectively. The fourth group were received a dosage of 10mg phenytoin daily. Five rats each were sacrificed and all sections were examined for histologic changes by light microscopy. The mean number of neutrophils, fibroblasts, macrophages, epithelialization, and the density of collagen fibers were evaluated in each group. Data were analyzed using ANOVA and Kruskal-Wallis tests. The number of fibroblasts and the rate of epithelialization in the group of phenytoin gel were significantly higher on the 7th day than the control group (P <0.05). The density of collagen fibers on the 14th day was significantly higher in the group of phenytoin gel than the control group (P <0.05). It can be concluded that topical phenytoin to promote wound healing of rat hard palate

    Avaliação Qualitativa da Água Engarrafada e Armazenadas em Frascos de Tereftalato de Polietileno com Base Compostos Químicos Orgùnicos

    Get PDF
    Polyethylene terephtalate (PET) is commonly used for bottling drinking water. PET must be harmless in the sense of the migration potentially unsafe materials into its content. The quality determination of migrated organic chemicals in 15 bottled water stored in PET was performed by gas chromatography-mass spectrometry technique. Most of the organic chemical compounds including phthalate, alkyl phenol, higher alkene and organic acid were detected in the samples. However, no carcinogens and hormones were recognized in the analyzed waters. The most migrated compounds identified between 13 to 100% of bottled water. The findings of present study could be alarming for the food safety legislative establishments in Iran due to the existence of some organic compounds with adverse influence on human wellbeing. Further investigation is recommended to evaluate the risk assessment of the public health arising from the presence of these toxic contaminants in the bottled water consumed by the people.Tereftalato de Polietileno (PET) Ă© comumente usado para engarrafamento de ĂĄgua potĂĄvel. PET deve ser inofensivo no sentido da migração materiais potencialmente inseguros em seu conteĂșdo. A determinação da qualidade de produtos quĂ­micos orgĂąnicos que migraram em 15 garrafas de ĂĄgua armazenada em PET foi realizada pela tĂ©cnica de cromatografia gasosa acoplada a espectrometria de massa. A maior parte dos compostos quĂ­micos orgĂąnicos, incluindo ftalato, alquil fenol, alceno de maior peso molecular e ĂĄcido orgĂąnico foram detectados nas amostras. No entanto, nĂŁo hĂĄ agentes cancerĂ­genos e hormĂŽnios foram detectados nas ĂĄguas analisadas. Os compostos migraram identificados entre 13 a 100% de ĂĄgua engarrafada. As conclusĂ”es do presente estudo poderia ser alarmante para os estabelecimentos legislativos de segurança alimentar no IrĂŁ devido Ă  existĂȘncia de alguns compostos orgĂąnicos com influĂȘncia negativa no bem-estar humano. Outras investigaçÔes Ă© recomendado para avaliar a avaliação de risco da saĂșde pĂșblica decorrente da presença desses contaminantes tĂłxicos na ĂĄgua engarrafada consumida pelas pessoas

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    This online publication has been corrected. The corrected version first appeared at thelancet.com on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein

    Opportunities, Challenges, and Strategies for Scalable Deposition of Metal Halide Perovskite Solar Cells and Modules

    No full text
    Hybrid organic‐inorganic perovskite solar cells (PSCs) have rapidly advanced in the new generation of photovoltaic devices. As the demand for energy continues to grow, the pursuit of more stable, highly efficient, and cost‐effective solar cells has intensified in both academic research and the industry. Consequently, the development of scalable fabrication techniques that yield a uniform and dense perovskite absorber layer with optimal crystallization plays a crucial role to enhance stability and higher efficiency of perovskite solar modules. This review provides a comprehensive summary of recent advancements, comparison, and future prospects of scalable deposition techniques for perovskite photovoltaics. We discuss various techniques, including solution‐based and physical methods such as blade coating, inkjet printing (IJP), screen printing, slot‐die coating, physical vapor deposition, and spray coating that have been employed for fabrication of perovskite modules. The advantages and challenges associated with these techniques, such as contactless and maskless deposition, scalability, and compatibility with roll‐to‐roll processes, have been thoroughly examined. Finally, the integration of multiple subcells in perovskite solar modules is explored using different scalable deposition techniques

    Additional file 1: of Prevalence of self-medication practice among health sciences students in Kermanshah, Iran

    No full text
    Questionnaire. The questionnaire of self-medication to assess the prevalence of self-medication in student. The tool has 16 questions which include demographic information and some details about self-medication, causes and medications. (DOCX 14 kb)

    Artificial Intelligence in Cancer Care: From Diagnosis to Prevention and Beyond

    No full text
    &lt;p&gt;Artificial Intelligence (AI) has made significant strides in revolutionizing cancer care, encompassing various aspects from diagnosis to prevention and beyond. With its ability to analyze vast amounts of data, recognize patterns, and make accurate predictions, AI has emerged as a powerful tool in the fight against cancer. This article explores the applications of AI in cancer care, highlighting its role in diagnosis, treatment decision-making, prevention, and ongoing management. In the realm of cancer diagnosis, AI has demonstrated remarkable potential. By processing patient data, including medical imaging, pathology reports, and genetic profiles, AI algorithms can assist in early detection and accurate diagnosis. Image recognition algorithms can analyze radiological images, such as mammograms or CT scans, to detect subtle abnormalities and assist radiologists in identifying potential tumors. AI can also aid pathologists in analyzing tissue samples, leading to more precise and efficient cancer diagnoses. AI's impact extends beyond diagnosis into treatment decision-making. The integration of AI algorithms with clinical data allows for personalized treatment approaches. By analyzing patient characteristics, disease stage, genetic markers, and treatment outcomes, AI can provide valuable insights to oncologists, aiding in treatment planning and predicting response to specific therapies. This can lead to more targeted and effective treatment strategies, improving patient outcomes and reducing unnecessary treatments and side effects. Furthermore, AI plays a crucial role in cancer prevention. By analyzing genetic and environmental risk factors, AI algorithms can identify individuals at higher risk of developing certain cancers. This enables targeted screening programs and early interventions, allowing for timely detection and prevention of cancer. Additionally, AI can analyze population-level data to identify trends and patterns, contributing to the development of public health strategies for cancer prevention and control. AI's involvement in cancer care goes beyond diagnosis and treatment, encompassing ongoing management and survivorship. AI-powered systems can monitor treatment response, track disease progression, and detect recurrence at an early stage. By continuously analyzing patient data, including imaging, laboratory results, and clinical assessments, AI algorithms can provide real-time insights, facilitating timely interventions and adjustments to treatment plans. This proactive approach to disease management improves patient outcomes and enhances quality of life.&lt;/p&gt
    corecore