30 research outputs found

    Chemical Bioconjugation of Proteins in an Undergraduate Lab: One-Pot Oxidation and Derivatization of the N-Terminus

    Get PDF
    A laboratory experiment introducing the concept of chemical bioconjugation of proteins to undergraduate students in a therapeutically relevant context was developed. Initially, students installed an aldehyde functionality into a protein via the oxidation of the N-terminal threonine residue of the cholera toxin subunit B (CTB) protein, which was followed by subsequent modification via hydrazone addition under mild conditions with a chromophore bearing a distinct UV–vis-absorption peak. Students determined the yield of the reaction to be ca. 11% by HPLC coupled to UV–vis spectroscopy and developed key skills such as preparation of stock solutions, chemical manipulation of proteins, and analysis via HPLC. The reported experiment can be readily adapted for use with other proteins and may contribute to enhancing constructive alignment in interdisciplinary degree programs at the chemistry–biology interface

    Biocatalytic Transfer of Pseudaminic Acid (Pse5Ac7Ac) Using Promiscuous Sialyltransferases in a Chemoenzymatic Approach to Pse5Ac7Ac-Containing Glycosides

    Get PDF
    Pseudaminic acid (Pse5Ac7Ac) is a nonmammalian sugar present on the cell surface of a number of bacteria including Pseudomonas aeruginosa, Campylobacter jejuni, and Acinetobacter baumannii. However, the role Pse5Ac7Ac plays in host–pathogen interactions remains underexplored, particularly compared to its ubiquitous sialic acid analogue Neu5Ac. This is primarily due to a lack of access to difficult to prepare Pse5Ac7Ac glycosides. Herein, we describe the in vitro biocatalytic transfer of an activated Pse5Ac7Ac donor onto glycosyl acceptors, enabling the enzymatic synthesis of Pse5Ac7Ac-containing glycosides. In a chemoenzymatic approach, chemical synthesis initially afforded access to a late-stage Pse5Ac7Ac biosynthetic intermediate, which was subsequently converted to the desired CMP-glycosyl donor in a one-pot two-enzyme process using biosynthetic enzymes. Finally, screening a library of 13 sialyltransferases (SiaT) with the unnatural substrate enabled the identification of a promiscuous inverting SiaT capable of turnover to afford ÎČ-Pse5Ac7Ac-terminated glycosides.</p

    Expanding the scope of the successive ring expansion strategy for macrocycle and medium-sized ring synthesis : unreactive and reactive lactams

    Get PDF
    New methods are described that expand the scope of the Successive Ring Expansion (SuRE) with respect to synthetically challenging lactams. A protocol has been developed for use with 'unreactive' lactams, enabling SuRE reactions to be performed on subsrates that fail under previously established conditions. Ring expansion is also demonstarted on 'reactive' lactams derived from iminosugars for the first time. The new SuRE methods were used to prepare a diverse array of medium-sized and macrocyclic lactams and lactones, which were evaluted in an anti-bacterial assay against E. coli BW25113WT

    Using Automated Glycan Assembly (AGA) for the Practical Synthesis of Heparan Sulfate Oligosaccharide Precursors

    Get PDF
    Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeerℱ, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography

    Site-selective incorporation and ligation of protein aldehydes

    Get PDF
    The incorporation of aldehyde handles into proteins, and subsequent chemical reactions thereof, is rapidly proving to be an effective way of generating homogeneous, covalently linked protein constructs that can display a vast array of functionality. In this review, we discuss methods for introducing aldehydes into target proteins, and summarise the ligation strategies for site-selective modification of proteins containing this class of functional handles

    Cell-specific Bioorthogonal Tagging of Glycoproteins

    Get PDF
    Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Benzyne arylation of oxathiane glycosyl donors

    Get PDF
    The arylation of bicyclic oxathiane glycosyl donors has been achieved using benzyne generated in situ from 1-aminobenzotriazole (1-ABT) and lead tetraacetate. Following sulfur arylation, glycosylation of acetate ions proceeded with high levels of stereoselectivity to afford α-glycosyl acetates in a ‘one-pot’ reaction, even in the presence of alternative acceptor alcohols
    corecore