29 research outputs found

    Structure-based design of a Cortistatin analogue with immunomodulatory activity in models of inflammatory bowel disease

    Full text link
    Ulcerative colitis and Crohn's disease are forms of inflammatory bowel disease whose incidence and prevalence are increasing worldwide. These diseases lead to chronic inflammation of the gastrointestinal tract as a result of an abnormal response of the immune system. Recent studies positioned Cortistatin, which shows low stability in plasma, as a candidate for IBD treatment. Here, using NMR structural information, we design five Cortistatin analogs adopting selected native Cortistatin conformations in soln. One of them, A5, preserves the anti-inflammatory and immunomodulatory activities of Cortistatin in vitro and in mouse models of the disease. Addnl., A5 displays an increased half-life in serum and a unique receptor binding profile, thereby overcoming the limitations of the native Cortistatin as a therapeutic agent. This study provides an efficient approach to the rational design of Cortistatin analogs and opens up new possibilities for the treatment of patients that fail to respond to other therapies

    Integrin alpha9 emerges as a key therapeutic target to reduce metastasis in rhabdomyosarcoma and neuroblastoma

    Get PDF
    The majority of current cancer therapies are aimed at reducing tumour growth, but there is lack of viable pharmacological options to reduce the formation of metastasis. This is a paradox, since more than 90% of cancer deaths are attributable to metastatic progression. Integrin alpha9 (ITGA9) has been previously described as playing an essential role in metastasis; however, little is known about the mechanism that links this protein to this process, being one of the less studied integrins. We have now deciphered the importance of ITGA9 in metastasis and provide evidence demonstrating its essentiality for metastatic dissemination in rhabdomyosarcoma and neuroblastoma. However, the most translational advance of this study is to reveal, for the first time, the possibility of reducing metastasis by pharmacological inhibition of ITGA9 with a synthetic peptide simulating a key interaction domain of ADAM proteins, in experimental metastasis models, not only in childhood cancers but also in a breast cancer model

    Topical Administration of Somatostatin Prevents Retinal Neurodegeneration in Experimental Diabetes

    No full text
    Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Somatostatin (SST) is an endoge-nous neuroprotective peptide that is downregulated in the diabetic eye. The aim of the study was to test the usefulness of topical administration of SST in preventing retinal neurodegen-eration. For this purpose, rats with streptozotocin-induced di-abetes mellitus (STZ-DM) were treated with either SST eye drops or vehicle for 15 days. Nondiabetic rats treated with vehicle served as a control group. Functional abnormalities were assessed by electroretinography (ERG), and neurodegeneration was assessed by measuring glial activation and the apoptotic rate. In addition, proapoptotic (FasL, Bid, and activation of caspase-8 and caspase-3) and survival signaling pathways (BclxL) were examined. Intra-retinal concentrations of glutamate and its main transporter glutamate/aspartate transporter (GLAST) were also determined

    Integrin alpha9 emerges as a key therapeutic target to reduce metastasis in rhabdomyosarcoma and neuroblastoma.

    Get PDF
    The majority of current cancer therapies are aimed at reducing tumour growth, but there is lack of viable pharmacological options to reduce the formation of metastasis. This is a paradox, since more than 90% of cancer deaths are attributable to metastatic progression. Integrin alpha9 (ITGA9) has been previously described as playing an essential role in metastasis; however, little is known about the mechanism that links this protein to this process, being one of the less studied integrins. We have now deciphered the importance of ITGA9 in metastasis and provide evidence demonstrating its essentiality for metastatic dissemination in rhabdomyosarcoma and neuroblastoma. However, the most translational advance of this study is to reveal, for the first time, the possibility of reducing metastasis by pharmacological inhibition of ITGA9 with a synthetic peptide simulating a key interaction domain of ADAM proteins, in experimental metastasis models, not only in childhood cancers but also in a breast cancer model
    corecore